
AF V-8 9- 1 8d,

.. l;N -N PTHMS AND PSYCnOPHYsICS
(FINAL REPORT)

g3 • ... a 198 - 1989

- " -* - Whitman Richards E1O-120
.. '7 :0;-776Massachusetts Institute of Technology

w:T.TT, «- , 2::.-:.+_ 7 .r1.- Cambridge, MA 02139

..... * ,: ... -'::, - ' ,:, 0-8'!

A 2 tcs~rI C a 'a~'ersmrr'exorreco~nitcn onhas neen a cnauleng:e
cc :: 'ia knOT> t',d' c:re we a:- -oach this problem by combining studies of representations
>7:,3 .. -u ins man vLual :wstein with computational studies of how such representations

:a'.: ..-" crei m~d man.:zsataed by machine. Both axia-baed and contour-based- descrip-
w-:rc werest.. ;g+atd vw:r emphasis on the role of curvature which was found to be an

;m., - ' - ' + prmitivu : -'-;*g both types of representations. Reluted, but unreported,

, ,112 co~ar an d m,,-tie, w hich often serve as the &g",o!efl that allows one to form

::o~c: : ,,',,;: ,- o boen iage contours or tokensse {JY&&l6 ib-apzqj iThs rsac
:::s 1?de r ',yeriflty publications, with only the major thus..t summarized here..

S{-.:: w nma::......ge uz~drtcvdin:, shape recognition,, visual pattern recognition, visual
:-c:o:.:sics vi,,on algor ithms. -5..J : .. .

October 1989

-A

Camrige MA 021<.9.:,.

Contents

~-ig2D Shapes 2

ITnd Axes 6

-r 2D Im-a-3 Cr rvat-ure 8

is,~ rr Contour Differenlation

Ji I_ 0--12, Strateav J

11l31nly nd Ciratr 5

rc:: ~ pr IdDTcrsnation 1

>r 1 'o~unsand Perc-Ivers 25

~ 32

~.t QJY:CJ~e'qGu.de to TDE)01VSZ 'T

SECURITY CLASSIFICATQN OF THIS PAGE

Form Approved

REPORT DOCUMENTATION PAGE OM Vo 04-o8e

la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified
2a SECURITY CLASSIFICAT:ON AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPOPT

2b DECLASSIFICATION /DOWNGRADING SCHEDULE Approved for public release;
distribution unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT tjV/BER(S,

,P O R. T. 89- 183
6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGA% Z47 ON

(if applicable)

Mass. Institute of Technology Air Force Office of Scientific Research
6c ADDRESS (City, State, and ZIPCode) 7b ADDRESS(City. State, and ZIP Code)

Dept. of Brain & Cognitive Sciences Boiling Air Force BAse
Cambridge, MA 02139 Washington, DC 20332

8a %AME OF FUNDING .'SPONSOR NG Bb OFFICE SYMBOL 9 PROCuREMENT INSPU.1EEP DE.%7; CA0 .
ORGANIZATION (If applicable)

AFOSR INL AFOSR-86-0139

8c ADDRESS (City, State, and ZIP Code) 10 SO,1CE O1 F ,, D YG .-,%*FPs
P;OGPP.1 DROECT .'.,-. ,' T

Bolling Air Force Base ELEMENT NO N IO LCCESS ON NO

Washington, DC 20332 61 10 2 F 2313 A5

1 1 TITLE (include Security Classification)

Vision Algorithms and Psychophysics

12 PERSON.A. AUT "OR S)
Whitman Richards

13a TYOE OF REPORT "30 TrNP COVERED 4 DATE OF REPORT (Year. Month. Day) 5 P E CO-%-
Final FROv1 Anr- ToL-Ag 9 October 1989 78

16 SUPPJEEN'ARy NOTATION

17 COSAI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FiED G0 OP SuB-GROuP Image understanding, shape recognition, visual pattern recognition,

visual psychophysics, vision algorithms.

19 AbSTRACT (Continue on reverse of necessary and identify by block number)

Representing shapes in a manner suitable for recognition has been a challenge for machine vision.
Here we approach this problem by combining studies of representations used by the human visual
system with computational studies of how such representations can be derived and manipulated
by machine. Both axial-based and contour-based descriptors were investigated, with emphasis
on the role of curvature which was found to be an important primitive underlying both types
of representations. Related, but unreported, studies include color and motion, which often serve
as the "glue" that allows one to form appropriate groupings of broken image contours or tokens
(see bibliography). This research has yielded over fifty publications, with only the major thrust
summarized here.

20 DiSTRBIuTIONiAVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

gUNCLASiFIED;UNLIMI1ED Q SAME AS RPT 0 DTIC USERS Unclssified
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

J. Tangney (202) 767-5021 NL
DD Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED -

90 01 04 1

Vision Algorithms and Psychophysics

1.0 Introduction

"Seeing" requires the construction of symbolic descriptions of the external world.

The most useful symbolic descriptions will be representations for each of the

various objects in the three-dimensional scene. These objects, in turn, may be

broken down further into more detailed modular representations that may include

the various attributes of each object such as its color, texture, or the shape and

relative motion of its parts. These latter properties are thus our basic building

blocks from which more complicated descriptions are built. Vision understanding

requires showing how such object properties can be represented internally, and

how they can be brought together to create a description suitable for recognition

or manipulation. This then, is our goal: to propose and implement a scheme for /

representing 3D shapes in a manner suitable for recognition.

To reach this goal, the research has proceeded along several parallel, but

complementary tracks. The first is the development of a theory for representing

3D shapes, or their 2D projections onto the image. Here we offer two possibilities r

4A8&

for representing 3D shapes (Gaussian curvature and Process-based descriptions) 'ced

40ofl

and also two proposals for representing 2D shapes (curvature-based codons and

the alignment method). None of these theories necessarily excludes using the -or I

.,I1bihdy Codes

Avail andlor
OM Special

RICHARDS 2

other. One element common to all the proposals is the key role played by cur-

vature or curvature extrema-a role supported by our psychophysical studies.

All present theories of shape recognition require that the shape be isolated

from its background. Hence a second research track has been the identification of

candidate "objects" in images, using color, visual motion, stereo, or significant

groupings of special image features (such as co-circular or parallel segments).

Again, as in the shape recognition proposals, the plausibility of our tentative

solutions are supported both by machine implementations and by visual psy-

chophysics.

2.0 Representing 2D Shapes

Line drawings and silhouettes testify to the power of the shape of a contour

as a means for object recognition. As illustrated by Attneave's famous "cat"

(and also Figure 1), much of this information about shape is carried by the

curvature extrema (Attneave, 1954; Fischler & Bolles, 1983; Resnikoff, 1987).

One reason why curvature extrema are critical to shape recognition is that they

divide the outline into its parts (Hoffman & Richards, 1982; 1984). As illustrated

in Figure 2, when objects are created by interpenetrating parts or protrusions,

a curvature extrema in the form of a concavity will appear in the image. Such

I.!

'I ...

RICHARDS 3

Figure 1 Curvature extrema carry significant information about shape.

Figure 2 The definition of a part boundary is derived from the transversal
property that two interpenetrating surfaces will meet at a concave disconti-
nuity.

concavities thus provide a powerful index into any part-based object recognition

scheme.

A second reason for emphasizing curvature as a shape primitive is that the

sign of curvature of a silhouette's contour in the image immediately tells the

viewer the intrinisic 3D shape of the object in the world (Koenderink & van

Doom, 1980, 1981, 1982, 1987). For example, a piece of silhouette having pos-

itive curvature must arise from a 3D surface with positive Gaussian curvature.

Such imaging properties mean that very powerful infererces about 3D shapes

can be made directly from 2D image contours. Consequently, in 1982 hoffman

and Richards proposed that the first abstract description of the 2D image curves

RICHARDS 4

40 0- U I* It

Figure 3 The primitive codon types. Zeros of curvature are Indicated by
dots, minima by slashes. The straight line (oo) Is a degenerative case included
for completeness, although it is not treated in the text. (See Richards &
Hoffman, 1984, for definitions.)

should be based upon the singularities of curvature-the positive and negative

extrema and the inflections of zero curvature. Noting that the extrema of nega-

tive curvature (i.e. the concavities) correspond to the part boundaries, it was easy

to show that there would only be five primitive or different elemental shapes for

representing smooth plane curves. These were called "codons" (Figure 3). Any

smooth curve could then be characterized quite simply in terms of the sequence

of its codons. Curves with identical codon sequences would then be topologically

identical, and hence "similar" to the human eye (see Figure 4). The scheme

offered a ready explanation for figure-ground reversals where the same image

contour "looked different" depending upon which side of the curve was taken

as figure (see Figure 5 and cover). The explanation was simple; a reversal of

figure-ground caused maxima of curvature to become minima, thus switching

the location of the part boundaries along the curve (and hence also the sign of

Gaussian curvature and the intrinsic 3D shapes).

RICHARDS 6

a' 2

010 0

0-

1

0. 0. * I.

Figure 4 Skewed symmetry Is obvious In the codon string because half the
sequence is reversed, ignoring the sign of the codon (left frame). Figure-
ground reversal changes the codon string because maxima and minima of
curvature are exchanged, providing a simple explanation for Rubin's face-
vase Illusion. (Adapted from Hoffman, 1983.)

Figure 5 Partitioning plane curves into Its parts. Extrema of negative
curvature are Indicated by slashes. Arrows Indicate direction of traversal of
curve. The figure is taken to be to the left of the direction of traversal.

A sequence of codons is a very abstract description of a plane curve. This

has advantages as a first index into shapes (see Figure 6), but obvious disadvan-

tages when metrical or relational information needs to be specified. Recently,

Ullman (1986) and Huttenlocher & Ullman (1987) have proposed a 2D shape

recognition scheme that supplements the curvature primitives with relational in-

formation. In this scheme, Ullman uses the fact that rigid 3D objects do not

RICHARDS

0X
L i z

Figure 6 A sloppy stereogram, where images presented to each eye (upper
two panels) include shapes that underwent distortions, changes in size and
articulations. Matching by shape using codons Is robust to these distortions,
just as matching to memory must be for recognition. (From Richards, 1988.)

change their appearance in arbitrary ways as they are rotated, and hence the set

of transformations from object to image is restricted. Indeed, only three distinct

feature points are needed to "undo" the unknown rotation, translation and scale

transformations, given the object model, thus permitting unique object-to-model

alignment (for rigid objects).

3.0 Processes and Axes

A second major approach to representing 2D shapes is proces-based descriptions.

Again, curvature and curvature extrema play a key role (Leyton, 1987, 1988,

RICHARDS 7

1989; Milios, 1989). The argument follows from the notion that when shapes

are created by either internal or external forces, then these forces are maximal

at a point, not a region, and consequently create a curvature extremum on the

surface of the shape.1 As the force is applied over time, this extremum will sweep

out a trajectory in space. With rather simple but plausible assumptions, Leyton

argues that this trajectory will correspond to the axis of symmetry of the shape.

Hence the symmetry axes of a shape reflect the process history of that shape.

The inference from curvature extrema to processes thus entails two stages:

curvature extrema -* symmetry axes --+ processes.

As we hinted above, the intermediate role of the symmetry axes in the process

description is crucial. Two kinds of curvature computations enter here. First,

as Leyton proves with his Symmetry Curvature Duality Theorem (1987), each

curvature eztrema corresponds to the termination of a unique differential axis

of symmetry. Second, these axes of symmetry are defined by pairs of tangent

vectors which are mirror symmetric on circles-a construction we will use later to

compute curvature. This construction is illustrated in Figure 7. The differential

symmetry axis of two segments of a curve is simply the locus of the midpoint of

1More properly, the application of a point force to an (elliptical) surface patch will cre-
ate two extremum-Afrst an hyperbolic saddle followed by the appearance of Leyton's
elliptic extremum.

RICHARDS 8

.C...

Figure 7 Two curves cl and C2 that have symmetric tangent vectors at A

and B. The SAT-axis is the loci of circle centers (represented by the dots
shown). The SLS-axis and PISA-axis would be the locus of points P and Q,
respectively.

the circles tangent to the curve (SAT) or, alternately, some other fixed point on

the circle or one of its chords (Blum, 1973; Pizer et al., 1987).

The obvious advantage of including axes in shape representations is that the

size orientation and relations between parts can be specified more fully (Marr &

Nishihara, 1978). A sequence of codons alone lacks this information. However,

as explored rather thoroughly by Leyton (1988), there is a close tie between the

codon and process or axial-based descriptions. We shall return to this briefly

later.

4.0 Computing 2D Image Curvature

Present algorithms for computing curvature along an image contour can be di-

vided into three categories, (1) the differentiation of an edge list of the con-

tour; (2) the construction of circles tangent to two points along the curve (co-

RICHARDS 9

circularity); and (3) symbolic grouping of certain image tokens. Our laboratory

has stressed the first approach (although see Saund, 1988 for work on the latter).L
4.1 Edge List or Contour Differentiation

In machine vision, once a blob or contour is isolated, its edge list can be numeri-

cally differentiated twice to yield curvature (Dawson & Treese, 1984; Richards et

al., 1986). Two scale issues arise in this process. First, the blob or contour is cus-

tomarily found using the Laplacian of Gaussian or some similar two-dimensional

smoothing function whose scale is chosen rather arbitrarily. Second, the resulting

edge list itself must be smoothed when constructing tangents to the curve, and

a scale must also be set for the curvature calculation, which customarily entails

simply running an "edge" or first derivative operator over a plot of tangent ori-

entation versus edge position. Alternatively, all of these operations can be done

locally using two dimensional masks (Koenderink & Richards, 1988)-but again

the spatial scale of the masks must be chosen in advance. To represent the com-

plete spatial structure of an image object, the computations must be performed

over a range of scales (Witkin, 1983, 1984; Koenderink, 1984; Yuille & Poggio,

1984). Thus, curvature extrema computed across scales yield a rather complex

data structure. How can this data structure be simplified?

RICHARDS 10

At B

Figure 8 Pears with different surface textures.

Figure 8 illustrates the problem. Let the silhouette of a pear-shaped object

(A) be modified to have either a sinusiodal ripple (B), prickles (C) or a composi-

tion of prickles and ripples (D). In spite of these modifications of the silhouette,

the underlying pear shape is still apparent to us. So is its part structure. This

suggests that the coarser scale part boundaries of (A) are still recoverable even

when corrupted by fine textured prickles (C). Most algorithms proceed to re-

cover the coarse scale structure of the corrupted silhouette (C) by blurring (as

in a Laplacian Pyramid). There are two disadvantages to this rather obvious

scheme: (1) the resultant data structure is exceedingly complex: because it car-

ries many 2D descriptions of the image, we are required to compute curvature

over and over again for each of these blurred versions of the image-each for

a different scale curvature operatorl (2) Surprisingly, sometimes these blurred

RICHARDS 11

Figure 9 When the top two shapes are blurred, then the handle either
merges with the ellipse to create a bump (left) or dissociates itself to create
a separate smaller ellipse (right).

versions of the original image can destroy or create new structures, as illustrated

by Figure 9. If this figure is blurred, the "handle" will break off in the right-hand

version to create two knobs, whereas in the left, the handle merges into a bump

on an ellipse. Neither result properly describes this object and its parts as we

see it.

4.2 Fine to Coarse Strategy

As an alternate approach, we propose computing tangent orientations along the

silhouette only at the finest 2D scale, ,nd then blurring (or grouping) these

fine-scale tokens by using larger and larger curvature operators. This approach

greatly simplifies the data structure, because only one scale space is constructed,

not a multiplicity of scale spaces. The result resembles Witkin's scale-space, but

in the curvature domain. Figure 10 shows this method applied to the pears (A)

I
I

A -.- -.--

RICHARDS 12

A B
Bttom Too Bottom T1"

2 "I

Figure 10 Curvature-space and level-crossing plots for A, the smooth pear
and B, the rippled pear shown In Figure 8. The ordinate shows the relative
widths of the curvature operator; positions on the abscissa correspond to
positions on the silhouette. All edge lists are normalized to the same length.
The two major part boundaries are indicated by the vertical lines through
the significant extrema of negative curvature. The vertical bars between the
two graphs indicate the region within which extrema are not marked, unless
a plateau appears in the level-crossing histogram. These bars correspond to
50% of the range of the filter width indicated by the level-crossing histograms
shown as Insets at the bottom. These graphs show only the first pass at part
decomposition.

and (B). An edge list is created for the silhouette, and tangents are computed

at the finest scale for each point on the edge of the silhouette. A curvature

operator (1-D edge mask) is then run across the plot of tangent orientation

versus edge position to obtain the data of Figure 10. Each curve in this figure

shows the output of one scale curvature mask (size labelled at the left) versus

position in the edge list. At the finest scale curvature-mask (eg. 1/8), the result

RICHARDS 13

is essentially white noise. However, as the size of the curvature mask is increased,

more and more structure appears in this kind of scale-space plot. For exan.. 4,

at scale (1/2) the sinusoidal ripples in pear (B) become apparent. And finally,

at the coarsest scale used (A), the underlying part structure is obvious, with

both pears (A) and (B) yielding similar graphs. [(C) also exhibits this but (D)

will not.] Thus, for some silhouettes with homogeneous texture, it appears that

smoothing over a fine-scale tangent distribution can be equivalent to blurring

the 2D image to remove fine detail. Under these conditions it is not necessary to

carry a multiplicity of blurred versions of the original image, with the operations

of Figure 10 applied to each. Generally, the finest scale image suffices. (Note,

however, that for Figure 8-D, some local normalizations of the texture must be

included-see Mokhtarian & Mackworth, 1986; Richards et al., 1986; Saund,

1988.)

4.3 Biological Support

Our fine-to-coarse proposal runs counter to current trends in computer and ma-

chine vision. Although a recent study by Saund (1988) shows how the grouping

of fine scale tokens can capture coarue-scale structure, additional supporting ev-

idence for this unorthodox approach is desirable. Here we appeal to evidence

RICHARDS 14

Figure 11 Small masks would be expected to underlie the computation
of high curvatures (A), whereas larger masks would seem to be required for
computing low curvatures (B).

that one of the most powerful vision processom-our own-seems to use this

fine-to-coarse strategy [see Richards (1988) for a stereo example].

Recently, Wilson & Richards (1989) estimated the size of curvature operators

using a discrimination paradigm. The idea is quite simple, as illustrated in

Figure 11. For high curvatures, small oriented edge or bar masks will be needed.

For lower curvatures, the obvious first choice is to simply magnify these same

operators. Thus, the expectation is that large scale (tangent) masks will be used

for low curvatures, whereas fine scale (tangent) masks compute high curvature.

Contrary to our expectations, fine scal, masks are used in the discrimina-

tions of both high and low curvatures. Coarse masks are not used to perform

RICHARDS

discriminations of low curvature. This conclusion is reached from two observa-

tions:

t (1) Blurring the image contour greatly impaired low curvature discrimination

(as well as high curvature discrimination)-contrary to what one would ex-

pect if larger, coarser masks are used to compute low curvatures.

(2) Band limiting low curvature contours so they were visible only to the finer

channels did not impair curvature discrimination-again suggesting that the

finer scale channels were responsible for the low curvature discrimination.

A final, important result, was a demonstration that the fine scale (tangent) oper-

ators were capable of computing low curvature provided a neighborhood scheme

was used, rather than local differentiation as described in an earlier section. This

second curvature mechanism is described below.

4.4 Co-circularity and Curvature

Consider the arc illustrated in Figure 12, with local coordinate frames at points A

and B and with the x axis set by the tangent to the contour. Then two tangents

z. and zb are defined as cocircular if and only if there is a circle to which they

are both tangent. Note that by this definition the tangents make equal but

opposite angles 4 to the line joining the points of tangency. Thus cocircularity

IUCHARDS 16

Ye X, ---
~ Yb

'A \ !X /e X't,B Xe

Figure 12 Local coordinate frames at A, B, and V satisfy the cocircularity
constraint when C = -4. (From Koenderink & Richards, 1988.)

defines a symmetry relation between the tangents and relates several schemes

for recovering shapes or their developmental processes (Blum, 1973, 1978; Brady

& Asada, 1984; Leyton, 1988). Referring to Figure 12, we see that this bilocal

operator for curvature can be defined by the amount of rotation 20 of the local

coordinate frame over the displacement 8, namely Coxrce = 20)16. Parent &

Zucker (1987) use this method quite successfully to infer continuity of segments

of broken lines or of intersecting contours. It also appears to be the scheme used

by the human visual system for curvatures below 10 deg- 1 , according to the

Wilson & Richards data.

The advantages of this second curvature mechanism are clear. If only fine-

scale tangents are constructed along a curve, then an exceedingly small angular

resolution would be required to compute curvature from adjacent tangents on a

curve. However, as the distance between the two tangents increases, the angular

resolution required decreases.

A further advantage of two curvature mechanisms is that each really ad-

dresses a different problem. Significant part boundaries usually create acute

RICHARDS 17

curvature extrema, such as *corners. The local differentiation operator (or its

2D equivalent) is ideally suited for this task, and could easily appear as a par-

allel computation throughout a (foveal) region. The bilocal or low curvature,

co-circular mechanism requires more machinery. It is most useful for testing for

curve or contour continuity, either when two curves intersect or when a contour

is broken. Generally these are low curvature computations that need to take

place at points where high curvature is present, such as at the intersection of

two curves where "corners" are created, or at "T" junctions. Thus, a parallel

set of high curvature operators could identify regions where the more complex

machinery of co-circularity could be profitably applied.

5.0 Inferring 3D Curvature

We now have an image-based data structure that describes a silhouette or image

curve in terms of curvature extrema or magnitude. Our next task is to infer

the 3D shape from the 2D image contour. As illustrated in Figure 13, our

implementation takes in an image, identifies blobs, and then calculates the 2D

shape of the blobs in terms of a sequence of codons (upper right). The data can

be presented either as a string of curvature versus edge I-osition as in Figure 10,

or pictorially for use in alignment schemes as in Figure 13. Here, Snoopy's head

has been given symbollic codon labels (1+ , 1-, 2) that represent a description of

RICHARDS 18

J+

TANGENT

Figure 13 Codon labeling for Snoopy's head, shown as a blob In the upper
left-hand panel at one scale of a binary pyramid. Lower left, tangent angle
versus position along the contour, lower right, coarsest scale of the curva-
ture space, showing marked curvature extrema; upper right, resultant codon
labeling.

this shape at one scale of the curvature computation. As previously mentioned,

a sequence of codons provides a complete description of a curve in terms of very

primitive elements defined by singularities of curvature (i.e. maxima, minima,

and zeros). Because the set is complete at this level of description, we can use

the codons to enumerate all possible silhouettes that we may encounter in our

images. Because of constraints on joining sequences of codons, there are only 21

possible shapes of smooth objects having four or less codons. Some of these are

shown in Figure 14. These shapes will serve as our set of 2D "silhouettes' whose

3D structure we wish to recover. They represent the classes of topologically

different outlines that can be constructed from up to four smooth closed codon

RICHARDS 19

P1 P2 P3

T4 07 08 012

T4' Q7' 08' 012,

Figure 14 Different classes of the outlines to be Interpreted. Dashed lines
are the preferred flexional (parabolic) loci. Primes indicate alternative inter-
pretations.

strings. Although this set may appear limited, it is easily extended. It will

become clear that our interpretation method will still handle the extended set.

5.1 Choosing a 3D Representation

To begin, we need a means of describing the shape of a 3D surface-its undula-

tions, protrusions, folds, etc. We choose for this purpose an intrinsic property of

3D surfaces, namely Gausian curvature.

At any point on a smooth (non-planar) surface, there is a direction where the

surface curves the most and another where the surface curves the least. These

RICHARDS 20

two directions are the directions of principal curvature, and they are always

perpendicular (Hilbert & Cohn-Vossen, 1952). The Gaussian curvature is simply

the product of the (signed) magnitude of these two curvatures. Of particular

interest to us here is simply the sign of the Gaussian curvature, which permits

a .1ualitative description of the topology of the surface in terms of four basic

types of "parts": an ellipse, a saddle, a cylinder, or a plane. If the signs of both

principal curvatures are identical, the surface patch is elliptical and the Gaussian

curvature is positive; when the principal curvatures have opposite signs, the

region is a "saddle" and the Gaussian curvature is negative (see Figure 15). A

cylinder has one principal curvature equal to zero; for the plane all curvatures

are zero and in both these cases the Gaussian curvature is therefore also zero.

An ellipse may now be represented as a 3D surface everywhere having positive

Gaussian curvature. (Our scheme will thus not distinguish between an ellipse

and other totally convex shapes, such as an ovoid.) A 3D dumbbell would be

described as two elliptical protrusions of positive Gaussian curvature joined by a

hyperbolic region of negative Gaussian curvature. A 3D peanut is a hyperbolic

region lying within an ellipsoid of positive Gaussian curvature. Note that our

description of 3D shapes in terms of Gaussian curvature captures only the general

topology of the shape. Hence a dumbbell and a pear-shaped object have similar

RICHARDS 21

K>O K<0 K=O K=O
Elliptical Hyperbollic Cylindrical Planar

Figure 15 The basic types of surfaces which wrn be used to describe 3D
shapes.

descriptions. To capture these distinctions, metric information can be added at

a later stage.

5.2 Inferring Gaussian Curvature from Silhouettes

Consider now the pear-shaped silhouette of Figure 14. Our 3D interpretation

is also that of a pear-as if this silhouette were simply a surface of revolution.

Why is such an inference justified?

A 3D pear is simply two elliptical protrusions joined by a hyperbolic saddle.

The silhouette gives us this information because of the following theorem proved

by Koenderink & van Doorn (1982):

Cl: The sign of Gaussian curvature of points on the 3D surface that project

into the silhouette is the same as the sign of curvaturz of those projections.

This theorem assures us that the Gaussian curvature of the 3D shape is posi-

tive at points on the surface that project into regions of positive curvature on

RICHARDS 22

the silhouette. Hence the elliptical outline is the projection of at least a 3D

elliptical "ribbon". Similarly, both the peanut and pear (or dumbbell) outlines

of Figure 14 require that the corresponding 3D shapes have hyperbolic (sad-

dle) regions of negative Gaussian curvature within a region (or two) of positive

Gaussian curvature. Note that this theorem also implies that dents, which have

positive Gaussian curvature but are concavities in the surface will never appear

in "generic" silhouettes.

At this point, one might be misled to the false conclusion that our problem of

inferring the general topology of 3D shapes from silhouettes is solved. However,

what about the back side of the silhouette? In principle, an infinity of possible

bumps and dents could occur, leaving open unlimited possibilities for the "real"

3D shape. Clearly our preferred, immediate 3D interpretation has assumed that

our view is such that more of the bumps or dents of the object are occluded or

invisible. In other words all the "part" structure of the object is visible. To

capture this motion, we propose the following interpretation rule:

C2: Do not propose undulations of the 3D surface without evidence for

such.

The above rule is an extension of the general position restriction, which requires

that the view of an object is not a special one and is stable under perturbation.

Further evidence supporting this interpretation rule has recently been provided

tRICHARDS 23

by Warrington (1986), who shows that the appearance of "part' structure in a

silhouette is critical to recognition: additional parts are not inferred until they

become visible in the silhouette.

Surprisingly, even with the two above constraints we still can not force a

unique 3D description (in terms of allowable undulations and protrusions). Con-

sider shape Q7. Is this shape a torso with two "bumps" on top, or is it a dumbbell

with a furrow-shaped saddle in one end? To characterize these differences more

clearly, we can enclose the regions of positive (and negative) Gaussian curvature

as illustrated by the dashed lines in Figure 14. These lines which separate the

regions of positive and negative curvature obviously must have zero Gaussian

curvature-they are locally cylindrical patches. Clearly these lines of zero Gaus-

sian curvature-the so-called flexional or parabolic lines-must go through the

inflection points on the silhouette. Again, Koenderink & van Doorn (1987) have

proven an important theorem about the behavior of these lines:

C3: For smooth generic surfaces, the flexional parabolic lines of zero Gaus-

sian curvature are closed and non-intersecting.

Thus, for a simple pear-shaped object with four inflexions on the silhouette, we

are allowed only two 3D decompositions as illustrated in Figure 16. Generally,

as proven by Beusmans et al. (1987), there will be [2 /(n/2 + 1) possible

legal generic interpretations of a silhouette having N inflections. Thus shape Q7

RICHARDS 24

4

2 3
21I

PdP

(o) (b,)

0@

44

p 3 pIp 3

Figure 16 (a) A contour having four infiection points (11, 12, 13, 14). The

corresponding four parabolic points (PI, P2, Ps, P4) on the fold can be paired
generically (b), (c) or nongenerically (d). (FRom Beusmans et &L., 1987.)

has 14 possible legal decompositions, yet only the two shown in Figure 14 are

readily visualized. This suggests further constraints or assumptions are imposed

upon our interpretations of silhouettes. As discussed elsewhere, one of the key

interpretation rules appears to be an extension of the general position rule (M2)

mentioned earlier:

CC: Without evidence to the contrary, pick the mot general position 3D

interpretation, namely that 31) shape which preserves the signs of Gausian

curvature of the silhouette over the widest range of viewpoints.

..SA....

RICHARDS 25

This rule favors surfaces of revolution, and excludes local furrows (saddles) when-

ever possible. Thus, the preferred interpretation for the dumbbell or pear-shaped

object is just that, and not something created by two separate saddle-shaped fur-

rows. This rule reduces the preferred interpretations of our given initial set of

topologically different shapes shown in Figure 14 to those illustrated. Thus, for

any given 2D image silhouette, we obtain a very restricted set of preferred 3D

interpretations from the infinity of possibilities.

6.0 Parts, Processes and Perceivers

Now consider the amoeba-like shape shown in Figure 17. Although we have rules

for describing this silhouette as a 3D shape in terms of regions of positive and

negative Gaussian curvature, a more desirable description would be in terms of a

part-based structure. After all -we don't describe a human body as a collection

of elliptical and hyperbolic patches, but rather as a torso with a head, neck,

arms, legs, etc. How can we convert a description based on Gaussian curvature

into the more useful part-based representation? Clearly we know where the part

boundaries are-these are the extrema of negative curvature. But given one

such concavity, to which should it be paired? We will consider two approaches

to this problem: (1) the process-history description (Leyton, 1988) and (2) the

Gaussian curvature description (Richards, Koenderink & Hoffman, 1987). Each

IUCHARDS 26

C

A

Figure 17 Point P Is a part-boundary, being an extremum of negative
curvature. To which other extremum should the boupdary be paired?

method produces fourteen different part-based descriptions of this simple amoe-

boid shape. A few of each are illustrated in Figure 18. The problem is to find a

set of rules which will pick out the preferred interpretations.

A major step in solving this type of problom has been made recently by

Jepson & Richards (1989). The advance was showing that a perception can be

regarded as an interpretation associated with a locally maximal node in a lattice

of possible interpretations of the sense data. To construct such a lattice, it is

necessary to invoke models of the world which are not always correct. Gener-

ally, one or more of the model elements must be given up or 'faulted" when

constructing a possible interpretation.

For example, the possible interpretations of the amoeboid shape shown in

Figure 18 may be ordered by preferring shapes which satisfy the following:

I

RICHARDS 27

AXIAL-BASED GAUSSIAN CURVATURE

C

* 1 2 3 4

a 4
C

AB ABD

C D 1 C 4

£ &
£ ,£

BD

A A C
D & // •

C

AB * A

C BCD

D B

AB•

C 1

2

FlgiMe 18 Possible pu.t-based descriptions for an amoeboid shape using
axial-based decomposition (left) or one based on Gaunian curvature (right).
The trees at the left and right margins suggest the process history.

L3

RICHARDS 28

FGAUSSIAN CURVATURE
BPHG

0
d#

EP HG

TRPHG

2 LE-PH

Figure 19 A partial ordering of part-based Interpretations for an amoeboid

shape, using Gaussian curvature primitives. Model premises B, P, H, G are
given In the text. The highest node in the lattice (BPHG) requires giving
up (or faulting) none of the preferred models. There is also another maximal

node ('BPHG) which faults one model premise (B).

B: The Object Body is the largest part.

P: Parts are convex,

H: Parts are separated by hyperbollic regions.

: The Body contains the center of rmm.

A portion of the resultant lattice for interpretations based on Gaussian cur-

vature is shown in Figure 19. There are two locally maximal nodes (BPHG) and

RICHARDS 29

(-BPHG). These interpretations correspond respectively to an ovoid with two

symmetric protrusions (BPHG) and a hyperbolic body with four protrustions

(APHG). As indicated by the bar, one rule was violated for the latter inter-

pretation. But still more violations would have occured if other submaximal

interpretations were accepted, as indicated by the superscripts. Similarly, the

process-based descriptions can be given a partial ordering using slightly different

rules which apply to axes. This lattice is different from that shown in Figure 19,

although one of the locally maximal nodes is identical to BPHG, and hence

would yield a perception with the same part-based description. Additional psy-

chophysical studies of lattices based on different representations are in progress.

Finally, we now have some insight into how to proceed in our analysis of oc-

cluded shapes. If our interpretation rules are context-sensitive-as they should

be--then the structure of our lattice of interpretations can be drastically altered

by neighboring structures (in space or time). Thus, in Figure 20A the context

suggests "disc-like' models, and the occluded shapes are so interpreted. But in

the presence of a "peanut" world (Figure 20B), the occluded shape is now more

readily men as a peanut. Similarly, if texture is added to one of the occluded

halves, but not the other, then the percept that there is only one object would

require violating the notion that an object should be uniformly colored and tex-

tured. Hence two different objects will be inferred. The *Perceiver Framework'

RICHARDS so

A B

FIgure 20 In window (A), the pole appears to occlude two separate discs.
However, in window (B), a single dumbbell-shaped object ems more likely.

is a vehicle for making such inferences quite rigorous, and is likely to drive a

good portion of our future research.

7.0 Summary

We have roamed over a rather broad territory in order to illustrate the advan-

tages and difficulties encountered in using curvature as a basis for inferring the

structure of smooth 3D shapes. Thanks to several implementations, we know

that the computation of image curvature is feasible. Given this 2D description,

assigning 3D Gaussian curvature is straightforward. The difficulty is that at

present our programs are not powerful enough to choose among the possible 3D

interpretations, especially in the presence of occlusions. Recent work on fault

RICHARDS 31

lattices offers one promising approach, however. Again, we expect to rely heav-

ily upon hints from human vision to guide us in how the 3D shape interpretations

might be made from 2D image contours, or silhouettes. An important step would

be to embody these newer ideas in a working machine program, just as has been

done for the computation of image curvature. Another would be to extend the

analysis from smooth objects to include those with fractal-like structures.

I

I

--

RICHARDS 32

8.0 References and Bibliography

*These publications were supported by this contract.

Attneave, F. (1954) Some informational aspects of visual perception. Psycholog-
ical Reiiew, 61:183-193.

Banchoff, T., Gaffrey, T. & McCrory, C. (1982) Cusps of Gauss Mappings. Pit-
man, Boston.

Bennett, J.B. & Hoffman, D. (1985) Shape decomposition via transversality. In
Image Understanding 1985-86 W. Richards & S. Ullman (eds.), Ablex
Publishing, Norwood, N.J.

Beusmans, J.M.H., Hoffman, D.D. & Bennett, B.M. (1987) Description of solid
shape and its inference from occluding contours. Jrl. Opt. Soc. Am. A,
4:1155-1167.

Biederman, I. (1986) Recognition by components: a theory of image interpreta-
tion. In Human and Machine Vision It, A. Rosenfeld (ed.), pp. 13- 57.

Blum, H. (1973) Biological shape and visual science (part 1). JrL. Theoretical

Biology, 38:205- 287.

Blum, H. & Nagel, R.N. (1978) Shape description using weighted symmetric axis
features. Pattern Recognition, 10:167-180.

*Bobick, A. (1984) Grouping visual targets. Abstract. Perceptual Organizations

Workshop, Pajaro Dunes, California.

*Bobick, A. (1984) Using mirror reflections to recover shape. Abstract. WH2,

Optical Society of America Annual Meeting.
*Bobick, A. (1987) Natural object categorization. Ph.D. thesis, MIT Dept. of

Brain and Cognitive Sciences; and MIT Al Lab. Tech. Report 1001.
*Bobic, A. & Richards, W. (1986) Classifying objects from visual information.

MIT Al Memo 879.

Brady, M. & Asada, H. (1964) Smoothed local symmetries and their implemen-
tation. Iet. Jrl. Robtics Research, 3:36-61.

Bruce, J.W. & Giblin, P.J. (1985) Outlines and their duals. Proc. Load. Math.
Soc., 50:552-570.

Burt, J.B. & Adelson, E.H. (1983) The Laplacian Pyramid as a compact image
code. ISEE Tree.. on Comm., Vol. COM-31, No. 4, pp. 532-540.

RICHARDS 33

Cayley, A. (1859) On contour and slope lines. London Edinburgh Dublin Philos.

Mag. J. Sci., 18(120):264-268.

*Dawson, B. (1987) Introduction to image processing algorithms. Byte, #3,

12:169-186.

*Dawson, B. (1987) Recognizing objects using curvature. ESD, 17:96-100.

*Dawson, B. (1988) Focusing on image enhancement. ESD, #3, 18:83-86.

*Dawson, B. (1989) Hardware and codon algorithms for parts matching. Elec-

tronic Imaging '89 West. Boston: BIS/CAP, 1:363-368.

*Dawson, B. (1989) Using codons to describe object outlines. IEEE International

Conference on Image Processing, 2:827-831.
*Dawson, B. (1989) Changing perceptions of reality. BYTE, 14:293 -304.

*Dawson, B. (1990) Improving the Sobel Edge Operator. Electronic Imaging '90

West. To be published Feb. 1990.

*Dawson, B. & Hallinan, P.W. (1987) TOOLKIT Image Processing Software,

Version 1.0. (Available MIT, Natural Computation Group, 79 Amherst
St., Cambridge, MA 02139).

*Dawson, B. & Treese, W. (1984) Computing curvature from images. Proceedings

SPIE, 504:175-182.
*Dawson, B. & Treese, W. (1985) Locating objects in a complex image. SPIE

Conference on Image Processing. Proceedings SPIE, 534:185-192.

Fischler, M.A. & Bolles, R.C. (1983) Perceptual organization and curve parti-
tioning. In Proe. Image Understanding Workshop, pp. 224-322.

*Gilson, W. (1984) Idiot's guide to OZ (a manual for text editing). Natural

Computation Group, MIT.

Hamacher, W. (1986) Codon constraints on 2D cusps. MIT Artificial Intelligence
Laboratory. Personal communication.

Hilbert, D. & Cohn-Vouen, S. (1952) Geometry and the Imagination. (Trans-

lated by P. Nemeny.) Chelsea, New York.

*Hildreth, E.C. (1984) The computation of the velocity field. Proc. Roy. Soc.
Lond. B, 221:189-220. Also MIT AI Memo 734. Alio chapt. 17 in Natural
Computation, W. Richards (ed.), MIT Press, Cambridge, Mam.

*Hildreth, E.C. (1984) Computations underlying the measurement of visual mo-

tion. MIT Al Memo 761.

ItCHARDS 34

Hoffman, D.D. (1983) Representing shapes for visual recognition. Ph.D. thesis,
MIT Dept. of Brain and Cognitive Sciences.

*Hoffman, D. & Richards, W. (1982) Representing smooth plane curves for recog-

nition: implications for figure-ground reversal. Proc. National Conference
on Artificial Intelligence, pp. 5-8. Also, in slightly augmented form, chapt.
6 in Natural Computation, W. Richards (ed.), MIT Press, Cambridge,
Mass.

*Hoffman, D.D. & Richards, W.A. (1984) Parts of recognition. Cognition, 18:65-

96 (1984). Also in Readings in Computer Vision, M. Fischler and 0.

Firachien, Morgan, Kaufmann, Los Altos, 1987.

Huttenlocher, D.P. & Ullman, S. (1987) Object recognition using alignment. MIT
Al Memo 937.

*Jepson, A. & Richards, W. (1989) Perception and Perceivers. Presented May 25

at a meeting on Vision and Three Dimensional Representation, University
of Minnesota, Minneapolis, Minnesota. (To appear as Univ. Toronto, Dept.
of Computer Science Tech. Report.)

Koenderink, J.J. (1984) The structure of images. Biol. Cybern., 50:363 -370.

Koenderink, J.J. (1987) The internal representation for solid shape based on the
topological prope-4ie- of the apparent contour. In Image Understanding
1985-86 W. Richards & S. Ullman (eds.), Ablex Publishing, Norwood,
N.J.

Koenderink, J.J. & van Doom, A.J. (1976) The singularities of visual mapping.
Biol. Cy6ernetica, 24:51-59.

Koenderink, J.J. & van Doorn, A.J. (1980) Photometric invariants related to
solid shape. Opta. Acta., 27:981-996.

Koenderink, J.J. & van Doom, A.J. (1981) A description of the structure of visual
images in terms of an ordered hierarchy of light and dark blobs. Proc. Sec-

ond International Visual Psechophyeic8 and Medica! Imaging Conference,

New York.

Koenderink, JJ. & van Doorn, A. (1982) The shape of smooth objects and the

way contours end. Perception, 11:1129-1137. Also chapt. 10 in Natural
Computation, W. Richards (ed.), MIT Press, Cambridge, Mass.

*Koenderink, J.J. & Richards, W. (1988) Two-dimensional curvature operators.
J. Opt. Soc. Amer. A, 5:1136-1141.

*Leyton, M. (1985) Generative system of analyzers. Computer Vision, 31:201-

241.

RICHARDS 35

Leyton, M. (1986) Principles of information structure common to six levels of
the human cognitive system. Information Sciences, 38:1-120.

*Leyton, M. (1987a) Symmetry-curvature duality. Computer Vision, Graphics

and Image Processing, 38:327-341.

Leyton, M. (1987b) Nested structures of control: an intuitive view. Computer
Vision, Graphics & Image Processing, 37:20-35.

*Leyton, M. (1987c) A limitation theorem for the differentiation prototypification

of shape. Jrl. Mathematical Psychology, 31:307-320.
*Leyton, M. (1988) A process-grammar for shape. Artif. Intel., 34:213-247.

*Leyton, M. (1989) Inferring causal history from shape. Cognitive Science, 13:357-

387.

Lowe, D.G. (1985) Perceptual organization and visual recognition. Kiuver Aca-
demic Publishers, Boston.

Marr, D. (1982) Vision: A Computational Investigation into the Human Rep.
resentation and Processing of Visual Information. Freeman Press, San
Francisco.

Marr, D. & Nishihara, H.K. (1978) Reprsentation and recognition of the spa-
tial organization of three-dimensional shapes. Proc. Roy. Soc. Lond. B,
200:269-294.

Maxwell, J.C. (1870) On hills and dales. London Edinburgh Dublin Philos. Mag.

J. Sci., 40(269):421-427.

Milios, E.E. (1989) Shape matching using curvature processes. Computer Graph-
ics & Image Processing, 46, in press.

Mokhtarian, F. & Mackworth, A. (1986) Scale-based description and recogni-
tion of planar curves and two-dimensional shapes. IEEE Transactions on
Pattern Analyis and Machine Intelligence, 8:34-43.

*Neumann, Y., Schechtman, G. & Ullman, S. (1990) Self-calibrated collinearity

detectors. Biological Cybernetics, in press.

Pizer, S.M., Oliver, W. & Bloomberg, S.H. (1987) Hierarchical shape description
via the multiresolution of the symmetric axis transform. IEEE Transac-
tions PAMI, 9:505-511.

Resnikoff, H.L. (1987) The ilusion of Reality: Topics in Information Science.
Springer-Verlar, N.Y.

RICHARDS 36

*Richards, W. (1984) Grouping without correspondence. Abstract. WP1, Optical

Society Annual Meeting.
*Richards, W. (1985) Structurc from stereo. 2:343-349. Also MIT AI Memo 791

(1983).
*Richards, W. (1988) Natural Computation. MIT Press, Cambridge, MA.

*Richards, W. (1988) A cyclopean experiment. Optics News, 14:212.

*Richards, W. & Bobick, A. (1988) Playing twenty questions with nature. In

Computational Processes in Human Vision: An Interdisciplinary Perspec-
tive, Z. Pylyshyn (ed.), Ablex Publishing, Norwood, N.J.

*Richards, W. & Hoffman, D.D. (1985) Codon constraints on closed 2D shapes.

Computer Vision, Graphics, and Image Processing, 31(3):26,5-281. Also in
A. Rosenfeld (ed.), Human and Machine Vision II, Orlando, Fla:Academic
Press, pp. 207-223, and MIT AI Memo 769 (1984).

*Richards, W. & Lieberman, H.R. (1985) Correlation between stereo ability and

the recovery of structure-from-motion. Amer. Jrl. Optom. Physiol. Optics,
62:111- 118.

*Richards, W. & UlIman, S. (eds.) (1987) Image Understanding 1985-86, Ablex

Publishing, Norwood, N.J.
*Richards, W., Dawson, B. & Whittington, D. (1986) Encoding contour shape by

curvature extrema. J. Opt. Soc. Amer. A, 3:1483-1491. Also chapt. 7 in
in Natural Computation, W. Richards (ed.), MIT Press, Cambridge, Mass.

*Richards, W.A., Koenderink, J.J. & Hoffman, D.D. (1987) Inferring three-di-

mensional shapes from two-dimensional silhouettes. J. Opt. Soc. Amer. A,
4:1168-1175. Also MIT AI Memo 840 (1985).

*Richards, W., Nishihara, H.K. & Dawson, B. (1988) CARTOON: A biologically
motivated edge detection algorithm. Also chapt. 4 in Natural Computation,
W. Richards (ed.), MIT Press, Cambridge, Mass. Also MIT AI Memo 668
(1982).

Rosenfeld, A. (ed.) (1984) Multiresolution image processing and analysis.
Springer-Verlag, Berlin.

*Rubin, J. (1984) Telling actors from objects. Abstract. WP4, Optical Society of
America Annual Meeting.

*Rubin, J.M. & Richards, W.A. (1987) Spectral categorization of materials, Image

Understanding 1985- 86, W. Richards & S. Ullman, eds., Ablex Publishing,
Norwood, pp. 20-44.

RICHARDS 37

Saund, E. (1988) The role of knowledge in visual shape representation. Ph.D.
thesis, Dept. of Brain and Cognitive Sciences, MIT; also MIT AI Lab. Tech.

Report 1092.

*Spalding, M. & Dawson, B. (1986) Finding the Titanic. Byte, 11:96- 110.

*Truv6, S. & Richards, W. (1987) From Waltz to Winston (via the Connection

Table). Proc. First Int. Conf. Comp. Vision, June 1987.
*Ullman, S. (1984) Visual routines. Cognition, 18:97-159. Also Center of Cog-

nitive Science Occasional Paper 20 (1984).

Ullman, S. (1986) An approach to object recognition: aligning pictorial descrip-
tions. MIT Al Memo 931.

*Ullman, S. & Richards, W. (eds.) (1984) Image Understanding 1984, Ablex

Publishing, Norwood, N.J.
*Ullman, S & Richards, W. (eds.) (1989) Image Understanding 1987-88, (eds.),

Ablex Publishing, Norwood, N.J..

Vaina, L.M. & Zlatera, S.D. (1988) The largest convex patches: a boundary
based method from obtaining object parts. Boston University Intelligence
Systems Lab. Working Paper 88- 85.

Warrington, E.K. & James, M. (1986) Visual object recognition in patients with

right hemisphere visions: axes or features? Perception, 15:355-366.

Watt, R.J. (1984) Further evidence concerning the analysis of curvature in human
foveal vision. Vision Res., 24:251-253.

Whitney, H. (1955) On singularities fo mappings of Euclidian spaces. I. Mappings
of the plane into the plane. Ann. Math., 62:374-410.

* Wildes, R.P. (1988) Recovering view and world geometry from stereo disparities.

Optics News, 14:219.

Wildes, R.P (1989) On interpreting stereo disparity. Ph.D. thesis, MIT Dept.
of Brain and Cognitive Sciences. Appears as MIT Al Lab. Tech. Report
1112.

Wilson, H.R. (1985) Discrimination of contour curvature: data and theory. Jrl.
Opt. Soc. Am. A, 2:1191-1199.

*Wilson, H.R. & Richards, W. (1988) Curvature and separation discrimination at
texture boundaries. Invest. Ophthal. Vis. Sci. Suppl., 29:408.

*Wilson, H.R. & Richards, W.A. (1989) Mechanisms of contour curvature dig-

crimination. J. Opt. Soc. Amer. A, 6:106-115.

tI

RICHARDS 38

Witkin, A.P. (1983) Scale-space filtering. Proc. International Joint Conference
on Artificial Intelligence, pp. 1019-1022. Karlsruhe, Germany.

Witkin, A.P. (1984) Scale-space filtering: a new approach to multi-scale descrip-
tion. In Image Understanding 1984, S. Ullman & W. Richards (eds.), Ablex
Publishing, Norwood, N.J., 1984

Witkin, A.P., Terzopoulos, D. & Kass, M. (1987) Signal matching through scale
space. International Jrl. Computer Vision, 2:133-144.

*Yuille, A. & Poggio, T. (1984) Fingerprint theorems. Proc. Assoc. Artificial

Intelligence (AAAI.84).

RICHARDS 39

9.0 Appendix: User's Guide to TOOLKIT

1.1 Introduction

1.1.1 Required Hardware

1.2 Entering TOOLKIT

1.2.1 Executable Images
1.2.2 The C Shell Environment
1.2.3 TOOLKIT Switches
1.2.4 TOOLKIT Arguments
1.2.5 Startup Script
1.2.6 Initialization

1.3 Exiting TOOLKIT

1.4 Menus

1.5 Image Windows

1.6 TOOLKIT Commands

1.6.1 How to Issue Commands
1.6.2 Command Arguments
1.6.3 Argument Prompting
1.6.4 Command Switches
1.6.5 Multiple Invocations

1.7 Help

1.7.1 Help on Particular Menus
1.7.2 Brief Help on a Particular Command
1.7.3 VerJ)ose Help on Particular Command

1.8 Scripts

1.9 Environment

1.10 Shell Commands

1.11 Summary of Special Commands

1.12 Sample TOOLKIT Session

2 Programmer's Guide to TOOLKIT

2.1 Introduction

2.2 File Locations

RICHARDS 40

2.3 How to Make TOOLKIT

2.4 The Environment

2.5 Graphics Windows

2.6 Terminal Screen Windows

2.7 Menus

2.7.1 Menu Descriptors
2.7.2 Menu Entries

2.8 Commands

2.8.1 Switches
2.8.2 Arguments
2.8.3 Data Table
2.8.4 Argument Values
2.8.5 How Data Tables Are Installed

2.9 Adding a Menu to TOOLKIT

2.10 Adding a Command to TOOLKIT

2.10.1 Adding a Command to a Menu
2.10.2 Creating <command>.c
2.10.3 Modifying a Command to Run on the BMP Processor

2.11 Useful Support Routines

3 TOOLKIT Commands

Add Title Enhance Contrast
Appodize FFT Image
Bandpass Filter FFT Plot
Binarize Fourier Fractal Seg
Block Fill Gaussian Expand
Change Directory Gaussian Filter
Circle Gaussian Reduce
Clear Window Get 1D
Color Threshold Get Picture
Complement Grey Operations
Convert Types Grid
Copy Window Halftone
Delete Tave Help
Delete Window Histogram
Demo Lambert Info Window
DoG Filter Init Display

i!

RICHARDS 41

Integer Operations Replicative Zoom
Interpolative Zoom Rotate 90
Line Segment Run Script
List Windows Scale Pixels
Make 1D Fractal Script Off
Make 2D Fractal Script OnMake Window Set Env
Median Filter Show Env
Mouse Block Fill Show Title
Mouse Block Read Snap Picture
Mouse Dots Statistics
Mouse Drag New Window Subsampling Reduce
Mouse Jagged Line Superimpose
Mouse Make Window Text
Mouse Pixel Read Thin
Mouse Polygon Threshold
Mouse Seeded fill To Core
Mouse Spline To Screen
Mouse Straight Line Translate Pixels
OH Curve Trestore
Print Picture Trim
Put Picture Tsave
Quit Verify Fractal
Random Binary Image Wedge
Rectangle White NoiseRefresh Terminal Zero Crossings
Replace Color

1. User's Guide to TOOLKIT 42

1.1 Introduction

This guide describes the purpose of TOOLKIT, the concepts needed to
understand its operation, and the commands needed to use it.

TOOLKIT was developed by:

Benjamin M. Dawson and Peter W. Hallinan
El0 - 120
Dept of Brain and Cognitive Science
Massachusetts Institute of Technology
Cambridge, MA 02139

Work on TOOLKIT was supported in part by AFOSR contract F 49620-83-C-
0135.

TOOLKIT is designed to facilitate the application of image processing
routines to color, binary, and greyscale images. Simple graphics rou-
tines are also included to allow both the construction of artificial im-
ages having a particular intensity function (e.g. perfect ramp edges)
and the modification of real images.

TOOLKIT is motivated by four goals:

1) To provide an interactive interface usable by both beginners and ex-
perts.

2) To exploit the variety of hardware - graphics printers, mice, graph-
ics displays, and video cameras - available to the Natural Computation
Group using device-independent code.

3) To consolidate existing programs into an easily usable whole and pro-
vide a structure to which future programs can be easily added.

4) To provide a turnkey demonstration system.

1.1.1 Required Hardware

This version of TOOLKIT requires a VT-100 terminal or VT-100 compatible
terminal (for split-screen operation). If you attempt to run this ver-
sion of TOOLKIT on another kind of terminal, you will see junk on the
screen. Other versions of TOOLKIT run under windowing systems on works-
tations such as the SUN.

TOOLKIT can be used without a display device, although not being able to
see the images and results makes using it difficult. If a display dev-
ice is used, it must have at least 8 bits per pixel, and preferably 24
bits per pixel (8 bits each for red, green, and blue). The display dev-
ice must also have at least 512 by 512 pixels, not all of which need be
displayed.

This version of TOOLKIT supports the Ikonas (Adage) 3000 and the Raster
Technologies Model one/25 for image display. Images can be acquired
with the Ikonas, or from disk files. It is a fairly easy task to change
TOOLKIT to support other image display and acquisition devices.

1.2 Entering TOOLKIT

43

At the Unix prompt type:

toolkit [-acei] [script files...]

You will see a copyright line in the middle of the screen separating a
menu window at the top from an interactive window at the bottom. The
TOOLKIT prompt > appears in the interactive window and TOOLKIT awaits
your command.

1.2.1 Executable Images

This version of TOOLKIT exists as a set of device dependent executables:

/usr/menu/SRC/ms iknew
/usr/menu/SRC/ms-srt

for the Ikonas (Adage) 3000 and the Raster Technologies model one/25.

A UNIX C Shell script file:

i /usr/local/toolkit

selects the correct executable depending on C shell environment vari-
ables that are set at login. These variables name the printers, point-
ing devices (e.g. mice), and display devices that are closest (in space)
to the terminal logged into. Thus for a user sitting next to a display
connected to the Ikonas, TOOLKIT will invoke the image compiled with the
Ikonas specific routines.

1.2.2 The C Shell Environment

The following variables should be set before calling TOOLKIT:

ROOM
PRINTER
GPRINTER
DISPLAY
POINTER TYPE
POINTERIO

They can be set by hand or the following commands may be placed in your
.login file:

setenv ROOM 'gethardware room'
setenv PRINTER 'gethardware printer'
setenv GPRINTER 'gethardware gprinter'
setenv DISPLAY 'gethardware display'
setenv POINTER TYPE 'gethardware pointertype'
setenv POINTERIO 'gethardware pointer_io'

gethardware is a program that accesses the database /etc/hardware to
find the value of the key (e.g. room) passed to it.

1.2.3 TOOLKIT Switches

Four switches may be specified on the UNIX command line in order to tell
TOOLKIT to:

a abort if an error occurs while executing a script file argument.

c create all imaqe windows in core because vou will not be

44
using a graphics display.

e echo to the terminal screen command lines found in script
files passed as arguments.

i initialize the graphics display upon starting TOOLKIT.

The -i and -c switches are mutually exclusive.

Switches must be prefixed by a minus sign unless two or more switches
are concatenated together, in which case only the first need be prefixed
by -. The order of the switches with respect to the arguments is uncon-
strained.

1.2.4 TOOLKIT Arguments

You may specify any number of script files on the command line (up to
the limits imposed by UNIX). Wildcards and other such characters are
expanded by the C Shell in the normal fashion. Thus:

toolkit *.s

runs all script files suffixed with ".s" in the working directory.

1.2.5 Startup Script

When starting up, TOOLKIT automatically tries to run the script file:

tkinit.s

TOOLKIT first looks for tkinit.s in the current working directory. If
the script is not found, then TOOLKIT looks in the home directory. If
tkinit.s is still not found, TOOLKIT goes on to run any script files
passed as arguments.

1.2.6 Initialization

TCOLKIT initializes in the following manner:

1) check arguments and switches for validity
2) create terminal windows
3) instantiate the environment variables
4) create image windows (see section 2.3 on switch -c)
5) open the display device
6) initialize the display device if -i specified (see section 2.3)
7) execute the startup script file tkinit.s
8) execute any script files passed as arguments
9) set up the terminal screen
10) start interactive session

To repeat, TOOLKIT will not automatically initialize the display device,
unless you issue the Snap command when using the Ikonas display, in
which case the display is initialized before each video buffer is
grabbed.

1.3 Exiting TOOLKIT

To exit TOOLKIT permanently, you may:

1) type "quit" or any abbreviation thereof, or
2) type Control-C

45

* Both commands restore the terminal screen to normal, close any open
script files, and exit.

To stop TOOLKIT temporarily to do other work in the C shell, type
Control-Z. This restores the terminal screen and stops the TOOLKIT pro-
cess. Upon restarting TOOLKIT, you may use the command Refresh Terminal
to redisplay the menu and interactive windows.

1.4 Menus

Menus are lists of commands organized hierarchically by function. The
current menu is the menu displayed in the top half of the terminal
screen.

There are two special menu commands displayed in every menu:

Main Menu: Forces the current menu to be the topmost (root) menu.

Up Menu: Forces the current menu to be the parent of the current menu.

To set the current menu to be any other menu, simply type the name of
the menu at the TOOLKIT prompt, e.g.:

> System Menu

Typing ? or ?? at the TOOLKIT prompt will cause a one line description
of the current menu to be printed on the screen.

Typing the name of a menu followed by a :? or :?? will cause a one line
description of the requested action to be printed on the screen.

1.5 Image Windows

TOOLKIT manipulates image windows (two dimensional pixel regions). Win-
dows can be located in core memory or on a graphics display. Windows
located in core memory DO NOT share pixel regions even if their posi-
tions and sizes indicate they overlap. Windows located on a graphics
display DO share pixel regions if they overlap. Thus clearing a graph-
ics display window that overlaps a second window will result in the
second window being (partially) cleared as well.

The top left corner of both the screen and a window is numbered (0,0).

Windows have six attributes of concern to the user:

1) x position - x location of top left corner of window in screen
coordinates. Unused but still specified for core windows.

2) y position - y location of top left corner of window in screen
coordinates. Unused but still specified for core windows.

3) dx - width of window in pixels.
4) dy - height of window in pixels.
5) updated - specifies whether the window is updated in core or on

the screen.
6) tsaved - specifies (for a window updated on screen) if the window

has been temporarily saved in core (a kind of temporary
backup).

7) title - a string associated with the window. It can be displayedonly by explicit command.

46

When TOOLKIT is run using a graphics device, the following windows are
automatically created at initialization time:

Name X Y DX DY Type Updated Tsaved?

go 0 0 512 512 Grey on screen no
gl 0 0 256 256 Grey on screen no
g2 256 0 256 256 Grey on screen no
g3 0 256 256 256 Grey on screen no
g4 256 256 256 256 Grey on screen no
cO 0 0 512 512 Color on screen no
cl 0 0 256 256 Color on screen no
c2 256 0 256 256 Color on screen no
c3 0 256 256 256 Color on screen no
c4 256 256 256 256 Color on screen no
tv 0 0 512 480 Grey on screen no

When TOOLKIT is run without an image display device, the following win-

dows are automatically created:

Name X Y DX DY Type Updated Tsaved?

go 0 0 512 512 Grey in core ---
gl 0 0 256 256 Grey in core ---
g2 256 0 256 256 Grey in core ---
g3 0 256 256 256 Grey in core ---
g4 256 256 256 256 Grey in core ---

Any of the above windows can be deleted; they are not special in any
way.

The maximum number of image windows is 50.

1.6 TOOLKIT Commands

1.6.1 How to issue commands

All commands are presented to the user in a menu format; however, any
command may be issued from any menu. Commands may be abbreviated as
long as the abbreviation is unique. If the command is in the current
menu, then the abbreviation only has to be unique within the current
menu because the current menu is always searched first. If the command
is composed of more than one word, the additional words can be omitted
or abbreviated just like the first as long as (a) the abbreviated com-
mand remains unique and (b) word abbreviations are separated by a space
The case in which the command is entered does not matter.

For example, the command:

> Mouse Jagged Line

can be abbreviated by:

> mouse Jagged
> m jag lINE
>m J 1

etc. but not by:

> m (not unique - will conflict with the ubiquitous
MAIN MENU if nothinq else)

47

> mjl (no spaces between word abbreviations)

1.6.2 Command Arguments

Arguments may be included on the same line as the command or may be
prompted for (see Argument Prompting below). Arguments placed on the
same line as the command are separated from the command by a colon; this
is necessary because commands may be made up of more than one word. An
example command line is:

> Statistics: window name

There are four argument types:

1) text - printing characters enclosed in quotes
e.g. "this is text *(&)(& 1981498"

2) reals - real numbers identified by a decimal point
e.g. -844.4343, 3., .65

3) integers - e.g. -43 (decimal), Oxff (hex), 067 (octal)
4) strings - an alphanumeric word beginning with a letter

e.g. windowl

1.6.3 Argument Prompting

An alternative to specifying arguments on the command line is invoke ar-
gument prompting by specifying less than the required number of argu-
ments. For example, if a command required five arguments you could
specify the first two and be prompted for the remaining three or specify
none and be prompted for all, e.g. entering:

> Statistics

would result in the prompt:

Window?

If no arguments are specified a colon is not required.

To quit a command while being prompted for arguments, type a period at
the prompt, e.g.:

Window?

will get us out of the Statistics command we invoked above.

Argument prompting is also invoked when an argument is found to be an
illegal type. (If the argument is the right type but the wrong value,
then the command will fail.) All subsequent arguments are assumed to be
incorrect as well and are prompted for.

1.6.4 Command Switches

Switches are used to change the action of a command, in contrast to ar-
guments, which instantiate variables employed in the command's computa-
tions. Switches are always single letters prefixed by minus signs, ex-
cept when several switches are concatenated together, e.g.:

> Histogram : -t
> Histogram : -t -c
> Histoqram : -tc

48

are all legal ways to specify switches.

Once argument prompting takes control, switches cannot be specified!

1.6.5 Multiple Invocations

A command can be invoked several times at once by specifying enough ar-
guments for the extra invocations. For example:

> Delete Window : gl g2

will result in Delete Window being executed twice since it normally
takes one argument. If we specified:

> Make Window : windowl 0 0 256 256 g window2

Make Window would also be executed twice; argument prompting would take
care of the unspecified four remaining arguments.

1.7 Help

The manual that describes the available commands is available on screen,
as are brief descriptions of a commands arguments and switches, and
brief descriptions of particular menus.

Note that all coordinates asked for and displayed are window coordinates
(NOT screen coordinates) unless otherwise specified.

1.7.1 Help on particular menus

If the menu in question is the current menu (ie displayed at the top of
the terminal screen), type either ? or ?? at the prompt to get a short
one line message describing the menu.

1.7.2 Brief help on a particular command

For a brief list of a commands arguments and switches enter a ? at the
TOOLKIT prompt or at an argument prompt, e.g. either:

> Histogram : ?
or

Window Name? ?

would display the following lines:

Histogram: <source> <t^destination> <c&clip>
Switches: <c - clip hi freq> <t - terminal only>

Source, destination, and clip are the arguments, c and t are the
switches. The switches modify the provision of arguments in the follow-
ing way:

o Source is not affected by any switch,
o Destination is only provided if switch t IS NOT specified

(t xor destination),
o Clip is only provided if switch c IS specified (c and clip).

Thus, if a is an argument and s is a switch:

SAa means s and a are mutually exclusive. I

rr _ _ - -- - - -- - ------- _- - -V- - -- V_

49

s&a means s and a are inseparable

Entering:
> Clear Window : ?

Would display the following lines:

Clear Window: <window> <bAr [0]> <bAg [0]> <bAb [0]>
Switches: <b = black>

A bracketed [I expression following an argument name contains the de-
fault value.

1.7.3 Verbose help on particular command

For verbose help that includes a verbal description of a command, its
arguments, and its switches, type ?? at either the TOOLKIT prompt or an
argument prompt, e.g.

> Make Window: ??

Window Name? ??

1.8 Scripts

Script files are ascii files containing a series of command lines.
These commands should appear in the script file just as if one were typ-
ing them in interactively.

A sample script file might look as follows:

this script file builds four windows @ 128x128 pixels
Make Window: $ 0 0 128 128 @
Make Window: $ 128 0 128 128 @
Make Window: $ 256 0 128 128 @
Make Window: $ 384 0 128 128 @

The $ is used to specify that the user should be prompted for the
corresponding argument. The @ is used to specify that the corresponding
argument should be the default value. Thus this script will prompt for
the names of the windows and assume that the window types are greyscale.

Note also that comment lines are flagged by #.

Scripts can be passed to TOOLKIT as arguments or run interactively. If
passed as arguments, specifying the -e switch will result in the script
file name and individual command lines being written to the screen.
Also, the "more" filter used by TOOLKIT to segment large tty output will
not be enabled. If a script is run interactively using the Run Script
command, the switch -e will work as above and the switch -i will enable
the more filter.

Script files can be created using an editor or they can be created dur-
ing an interactive session by means of a mechanism that records success-
fully executed commands. The recording mechanism is turned on by the
Script On command and turned off by the Script Off, Quit and Control-C
commands.

If a script file contains the Quit command, TOOLKIT will exit.

1.9 Environment

5o

TOOLKIT stores device paths and other such data in environment variables
local to TOOLKIT, but displayable and changeable by the user.

Current environment variables and sample values are:

Terminal Device = /dev/tty
Terminal Type = vtlOO
Printer = prO
Graphics Printer = gr
Display = /dev/rsl
Microcode = /usr/menu/MICROCODE/tkbmplib.u
Pointer Type = mouse
Pointer Line = /dev/tty05
Prompt = >
Beep On Error = On

1.10 Shell Commands

Shell command can be entered either at the TOOLKIT prompt or at an ar-
gument prompt by prefacing the shell command with the shell escape char-
acter !. For example, you could obtain a directory listing before or
during the Get Picture command by:

> ! is *.pic
> Get Picture: gO rabbit.pic

or
> Get Picture: gO
File Name? !ls *.pic
File Name? rabbit.pic

If script recording is on, shell commands issued at the TOOLKIT prompt

will be recorded, but not shell commands issed at the argument prompt.

1.11 Summary of Special Commands

cmd = command
a = argument
s = switch
p = argument prompt
xyz = anything
A = control

Symbol Usage Importance

: cmd:a separates a command from its arguments
?? cmd:?? displays lengthly command-specific helpP:??
? cmd:? displays short list of arguments and switches

P:i
?? ?? displays short help line for current menu? displays short help line for current menu

$cmd:$ a forces prompting for a specific argument
@ cmd:@ tells routine to use a default value for an argument
#xyz precedes comments

!cmd execute cmd in the shell instead of toolkit
p: ! cmd

AC AC causes the terminal screen to be restored to normal,
closes script files, exits TOOLKIT

AZ AZ causes the terminal screen to be restored to normal,
stops TOOLKIT

51
1.12 Sample TOOLKIT session

(The TOOLKIT program starts up displaying the MAIN MENU:)
MAIN MENU

Help Graphics Menu System Menu Main Menu
Quit Mouse Menu Transform Menu Up Menu
Demo Menu Peter's Menu Window Menu

......... TOOLKIT Version 1.02, (C) Copyright M.I.T. 1987

> tran

(The user selects the Transform Menu (by typing tran). Incomplete commands
are matched and completed. A session using the Transform Menu follows. It
shows the use of detailed hel (??), help with arguments (?), and argument
completion when arguments are not specified. User input is scrolled below the
menu. The session ends with a Quit command.)

TRANSFORM MENU
Binarize Integer Operations Superimpose
Complement Interpolative Zoom Thin
DoG Filter Median Filter Threshold
Enhance Contrast Replace Color Translate Pixels
Gaussian Filter Replicative Zoom Zero Crossings
Grey Operations Scale Pixels Main Menu
Histogram Statistics Up Menu

------TOOLKIT Version 1.02, (C) Copyright M.I.T. 1987-........

> Repli zo : ??

Replicative Zoom: <source> <destination> <x zoom> <y zoom>

REPLICATIVE ZOOM: - Does a replicative integer zoom. The source window is
expanded into the destination window by replicating pixels
in the X and Y directions. If the destination window is
too big, the extra area is untouched.

Source - May be greyscale or color.
Destination - Must be the same type of window as the source.
X Zoom - Integer scale factor (> 0) for horizontal stretch.
Y Zoom - Integer scale factor (> 0) for vertical stretch.

> rep zoom : gO gl 2 2

> threshold :?
Threshold: <window> <lower bound> <upper bound > <color or grey value>
Switches: < b - function b> <c - function c> <s - skip color>

> thresh : g2 40 100

> scale
Source? gl
Destination? g2
Scale Factor (real)? .4

> zero cr : ??
Zero Crossings: <source> <destination>
> zer cros g2 gZ

> quit

52

2. Programmer's Guide To TOOLKIT

2.1 Introduction

This section describes where files are located, how to make TOOLKIT,
what the data structures are, how to add and modify commands and menus,
and where to find useful subroutines (e.g. for error checking).

2.2 File Locations

/usr/etc C shell script file "toolkit" used to
invoke the correct device-dependent
executable file.

/usr/menu/DEMO Script files for demo-ing TOOLKIT

/usr/menu/DOC Text of documentation and shell script
to create documentation of commands

/usr/menu/INCLUDE Include files

/usr/menu/MICROCODE BMP microcode versions of commands

/usr/menu/OLDHIPS old version hips files used in image
file I0.

/usr/menu/SRC source and object for the infra-
structure -- e.g. command parsing,
menu tables, etc also the location of
the executable files.

/usr/menu/SUBRS source and object for the commands
and for the library (support) routines

/usr/peter/RESEARCH source and object for some fractal

related commands.

2.3 How to Make TOOLKIT

If you have changed an include file, you will have to recompile every-
thing, otherwise you can just go to the directory in which you made the
change and type:

make all

and then you can make the new executables by:

cd /usr/menu/SRC
make tk rt tk ik

The only directories in which you might have to recompile code are:

/usr/menu/MICROCODE
/usr/menu/SRC
/usr/menu/SUBRS

Remember that if you change a filename or add a file you will have to
modify the proper Makefile and possibly delete the old version of the
archive library so that no multiple declarations occur.

53

2.4 The Environment

The environment is a global structure containing environment variables
which are loaded from various data bases or set arbitrarily. The actual
structure is:

typedef struct tENV
char *e termdev; /* device driver for terminal */
char *etermtype; /* terminal type, e.g. vtlOO */
char *e printer; /* printer device */
char *e_gprinter; /* graphics printer */
char *edisplay; /* display driver */
char *e microcode; /* directory containing microcode */
char *eptrtype; /* type of pointer */
char *eptrio; /* io line for pointer, eg ttyO5 */
char *eprompt; /* command prompt */
bool ebeep; /* beep on error? */

}ENV;
The name of global environment is "environment". The global array

"env names" contains printable strings describing each variable. If the

structure is modified, then routines in tk env.c, show env.c, and
set env.c probably will have to be changed also.

2.5 Graphics Windows

Graphics windows exist on the display device or in core if there is no
display device. The structure describing a window is:

typedef struct tWIN
int w_xs; /* x start - pos of top left corner */
int wys; /* y start - pos of top left corner */
int wdx; /* x width in pixels */
int w_dy; /* y width in pixels */
char *w name; /* ptr to symbolic name */
int wbpp; /* bytes per pixel */
int wtype; /* window type */
int wuflags[NUF]; /* array of user flags */
char *wtitle; /* title string */
int w us; /* value of update screen? predicate */
int *wcore; /* ptr to core space for image -

assigned most commonly used type */
WIN, *WPTR;

2.6 Terminal Screen Windows

A terminal screen window is defined by the structure:

typedef struct tSCWINDOW
int _maxy, _maxx; /* window dimensions */
int _begy, _begx; /* absolute pos of top left corner */
bool -scroll; /* value of can it scroll? predicate */
int _outcol; /* col at which to start writing */

SCWINDOW;

2.7 Menus

2.7.1 Menu Descriptors

54

The structure describing a menu to be displayed on a terminal screen is:

typedef struct t MENU {
char *title; /* Menu title */
char *helpline; /* Help line for menu */
int startx,starty; /* Starting x and y */
int entrycount; /* Number of entries in menu */
int nrows,ncols; /* Number of rows and columns */
int colsize; /* Maximum size of a column */
ENTRY *entry; /* entries for this menu */

} MENU, *MENUPOINTER;

2.7.2 Menu Entries

typedef struct t ENTRY {
char *printname; /* String to print for entry */
int submenu; /* Index of submenu. -1 if function */
int (*f binding)(); /* Function binding */

} ENTRY, *ENTRYPOINTER;

2.8 Commands

Commands work as follows:

1) A command line is entered interactively or by script file.

2) The command line is parsed into the command, switches and arguments.

3) The command is matched with entries in the menu tables until a
unique match is found.

4) The menu entry contains a ptr to a function that when invoked re-
turns a pointer to the command data table.

5) The switches are looked up in the commands switch table to see a) if
they are legal and b) if they change the number of arguments the command
expects (e.g. sometimes the user can specify a switch instead of a par-
ticular set of three color arguments).

6) the number and type of arguments are compared with the expected
number and type as extracted from the argument table.

7) automatic prompting is invoked if necessary to get additional un-
specified arguments or to replace arguments that have an illegal type.

8) the command function pointed to by the data table is invoked or if
help is requested the help table and switch info are printed.

2.8.1 Switches

Command switches are contained in an array of switch descriptors. Each
descriptor is a structure of the form:

typedef struct t SDES
char Ts name; /* name of switch */
char s val; /* value of switch */
int s adiff; /* change to num of expected args */
int s-aindx; /* NOT USED */

SDES, *SPTR;

2.8.2 Arquments

55

Command arguments are contained in an array of argument descriptors.
Each descriptor is a structure of the form:

typedef struct tADES {
char *a name; /* argument prompt */
int atype; /* argument type */
char *adef; /* str containing default value */

}ADES, *APTR;

2.8.3 Data Table

/* structure to hold information about a ms command*/
typedef struct t DATA {

int T*dsubr) (); /* ptr to func. that performs command */
int d argc; /* number of args */
ADES *d ades; /* array of argument descriptors */
int d switchc; /* number of switches */
SDES *d_sdes; /* array of switch descriptors */
char *duse; /* short help line */
int d lines; /* number of lines in long help */
char *Td_help; /* long help - array of str *1

I DATA, *DPTR;

2.8.4 Argument Values

/* union to hold an argument in its correct data format
*/
typedef union t AVAL {

int v_int; /* integer value */
double v double; /* real value */
char *vstr; /* str value */

AVAL, *AVPTR;

2.8.5 How Data Tables Are Instantiated

In each file containing a command, the programmer explicitly defines an
array of argument descriptors, an array of switch descriptors, a single
string that constitutes the brief help line, and an array of strings
that constitutes the long help. Finally, the programmer calls the macro
QUERY with the name of the data table and the name of the subroutine
that he wants to add. QUERY expands into the following routine which
defines and instantiates the data table. The table is local to the file,
as are all the other data structures. If the programmer defines EXPEC-
TARG val, then val is the number of arguments the command will expect to
receive if no switches are given. This allows the programmer to specify
more argument descriptors in the table than are usually used. Thus a
switch s can be defined which increases the number of expected arguments
whenever it is specified. Defining EXPECTARG is not necessary to create
switches that decrease the number of expected arguments.

#define SWITCHTAB static SDES cmdsubr s[]
#define ARGTAB static ADES cmdsubr-a[]
#define USAGE static char *cmdsubr u
#define HELP static char *cmdsubr h[]
#define SIZES (sizeof(cmdsubr s)/sTzeof(SDES))
#define SIZEA (sizeof(cmdsubr-a)/sizeof(ADES))
#define SIZEH (sizeof(cmdsubr-h)/sizeof(char *))

/* macro defininq a function that provides access to a routine's data table

56

#ifdef EXPECTARG
define QUERY(x,y)\

DPTR x()\

static DATA cmdsubrd;\
extern int yo;\
cmdsubr d.d subr = y;\
cmdsubr--d.d-argc = EXPECTARG;\
cmdsubr-d.d-ades = cmdsubr a;\
cmdsubr-d.d-use = cmdsubr u;\
cmdsubr-d.d lines = SIZEH;\
cmdsubr-d.d-help = cmdsubr h;\
cmdsubr-d.d-sdes = cmdsubr-s;\
cmdsubr-d.d-switchc = (cmdsubr s[O.s val ? SIZES :0);\
return (&cmdsubrd) ; \

#else
define QUERY(x,y)\
DPTR x()\

static DATA cmdsubr d;\
extern int y();\
cmdsubr d.d subr = y;\
cmdsubr d.dargc = SIZEA;\
cmdsubr d.d ades = cmdsubr a;\
cmdsubr-d.d-use = cmdsubr u;\
cmdsubr-d.d-lines - SIZEH;\
cmdsubr d.dhelp = cmdsubrh;\
cmdsubr d.d sdes = cmdsubr s;\
cmdsubr-d.d-switchc = (cmdsubrs[O.sval ? SIZES :0);\
return(&cmdsubrd);\

#endif

2.9 Adding a Menu to TOOLKIT

Files to Change: /usr/menu/SRC/tkmenus.c
Files to Add: none

1) create a unique #define flag for the menu.
2) create a menu descriptor.
3) create an entry list.
4) add the menu name to the menu list.
5) add a command to the parent menu to access the.

new menu (this command will require the #define flag).
6) do not forget to include the menu commands,:

MAIN MENU
UP MENU

in the new entry list.

If menu descriptors, entry lists, and menu lists are unfamiliar, look at
other menus and entry lists in tk menus.c for an example, and consult
section 4 for a description of the structures used.

2.10 Adding a Command to TOOLKIT

Files to Change: /usr/menu/SRC/tk menus.c
/usr/menu/SUBRS/Makefile

Files to Add: /usr/menu/SUBRS/<command>.c

57

2.10.1 Adding a Command to a Menu

1) Add external declaration of function pointer placed in the entry.
2) Add entry to the appropriate entry list.

For example, to add the command Histogram to the Transform Menu we add
the line:

extern int histogramo;

and the entry ("Histogram", FUN, histogram} to the entry list:

static ENTRY transform-entries[] =

"Binarize", FUN, binarize,
"Enhance Contrast", FUN, enhance,
"Gaussian Filter", FUN, gaussian,
"Histogram", FUN, histogram,
"Interpolative Zoom", FUN, intzoom,
"Main Menu", MAINMENU, goto menu,
"Up Menu", MAIN_MENU, goto_previous,
1;

2.10.2 Creating <command>.c

Use an existing command file (eg histogram.c) as a template. If the
command will require a mouse, use mbread.c as a template.

2.10.3 Modifying a Command To Run on the BMP Processor

Files to Change: /usr/menu/SUBRS/<command>.c
/usr/menu/SUBRS/tk bmp.c
/usr/menu/SUBRS/xxxbmp.c
/usr.menu/SUBRS/xxx host.c
/usr/menu/MICROCODE7main.g
/usr/menu/MICROCODE/Makefile

Files to Add: /usr/menu/MICROCODE/<command>.g

If the command is to be run on the BMP or the host, then use copy.c and
copy.g as templates. The layer of indirection exemplified by copy xxx
(see copy.c) serves to isolate code requiring bmp routines, so that bmp
code is contained only in the version that is compiled to run on the
BMP.

2.11 Useful Support Routines

The following files contain various support r6utines. All files are in
/usr/menu/SUBRS.

core lib.c read and write pixels to core
Cs rdhh.c read image file header
cs-wthh.c write image file header
drawbox.c draw a box
drawcircle.c draw a circle
drawline.c draw a line
fft tj.c compute a fast fourier transform
gsu~s.c gaussian and dog convolution
interact.c interactively create median filter kernel
mouse.c mouse io
pyramid.c move and down multiresolution pyramid
readfile.c read file into window

58

solve lib.c solve linear matrix equation of form AX=B
spline.c compute spline
tkbmp.c c interface to bmp microcode primitives
tk rt.c c interface to Rastech primitives
util lib.c transfer image btwn core and display,

image transforms
winlib.c window manipulation, error checking, assorted

other
win_prim.c read & write pixels - top layer
writefile.c write image to file
xxx-bmp.c dispatch to bmp or host depending on hardware
xxxhost.c dispatch to host only

59

Add Title: <window> <"title">

ADD TITLE - Adds a title string to a window's internal representation.
Use INFO WINDOW to display title on terminal screen.
Use SHOW TITLE to display title in window.
Call this routine again to change the title.

Window - No restriction.
Title - Limited to the number of characters that will fit in the

window. Title must be contained within quotes.
One character is 8 pixels wide and 10 pixels high.

Appodize: <source> <destination>

APPODIZE - filter image with ramp edge in the spatial domain
ramp edge defined along outermost ten pixels of shortest
radius

Source - must be greyscale with square dimensions equal to power of 2
Destination - must be same type and size as source

Bandpass Filter: <source> <destination> <low> <high>
Switches: <i - integer-valued>

BANDPASS FILTER - delete frequencies below a low threshold and above
a high threshold. This filter can serve as a
lopass and hipass filter as well.

Source - must be greyscale with dimensions = power of 2
Destination - must be same size and type as source
Low Threshold - lowest passable frequency
High Threshold - highest passable frequency

Binarize: <source> <destination> <threshold>

BINARIZE - sets pixels with intensity >= threshold to 255 and
sets pixels with intensity < threshold to 0.

Source - must be greyscale
Destination - must be same type and size as source
Threshold - intensity value t s.t. 0 <- t <= 255

Block Fill: <window> <xl> <yl> <x2> <y2> <i^r [0],> <iAg [0]> <iAb [0]>
Switches: <i - inverted color>

BLOCK FILL - Fills a block with a color.
Blocks extending past window boundaries are clipped.

Window - may be greyscale or color.
Xl - x coordinate of corner 1
Y1 - y coordinate of corner 1
X2 - x coordinate of corner 2 (opposite corner 1)
Y2 - y coordinate of corner 2 (opposite corner 1)
Red - red color value
Green - green color value (ignored if window is greyscale)
Blue - blue color value (ignored if window is greyscale)
-i - draw block in inverted color

Do not provide color arquments with this switch.

60

Change Directory: <directory>

CHANGE DIRECTORY - change the current working directory.
Directory - a UNIX directory pathname.

Circle: <window> <xcenter> <ycenter> <radius> <i-r [0]> <i^g [0]> <iVb [0]>
Switches: <i = inverted color>

CIRCLE - Draws a circle in a window.
Circles extending past window boundaries are clipped.

Window - may be greyscale or color
X Center - x coordinate of center
Y Center - y coordinate of center
Radius - radius in pixels
Red - red intensity
Green - green intensity (ignored if window is greyscale)
Blue - blue intensity (ignored if window is greyscale)
-i - draw the circle in inverted color.

Do not provide color arguments with this switch.

Clear Window: <window> <b^r [01> <b~g [01> <b^b [01>
Switches: <b = black>

CLEAR WINDOW - sets every pixel in a window to a color you specify.
Window - must be greyscale or color
Red - red intensity
Green - green intensity (ignored if window is greyscale)
Blue - blue intensity (ignored if window is greyscale)
-b - set window to black (0,0,0)

Do not provide color arguments with this switch.

Color Threshold: <src> <dest> <"bounds" [see help]> <"colors" [bmvcgyorw]>

COLOR THRESHOLD - partitions an image into 9 colors.
It is used in conjunction with PRINT PICTURE.

Source - can be greyscale or color but in either case only
the red byte is used.

Destination - must be color and must match the size of the source.
Boundaries - a quoted list of two to ten monotonically increasing

integers that partitions a greyscale intensity range
The first integer must be zero; the last must be 256.
The default is: "0 30 60 90 120 150 180 210 240 256"

Colors - a quoted list of characters indicating the color to which
the corresponding intensity partition will be set.
If n bounds are specified, n-i colors must be specified.
Permitted colors are: (b)lack, (m)ud, (v)iolet, (c)yan,
(g)reen, (y)ellow, (o)range, (r)ed, (w)hite
The default is: "bmvcgyorw"

rc
Complement: <source> <destination>

61

COMPLEMENT - transforms the intensity of each pixel in an image to
the difference between the pixel's intensity and
the maximum intensity.

Source - must be greyscale or color
Destination - must have same type and dimensions as source

Convert: <window> <newtype>

CONVERT - changes a window's type to the type you specify.
Any requisite thresholding must be completed
before calling CONVERT, eg grey to binary.
Real images are normed to (0,255) before
being converted to grey.

Window - no restriction
New Type - (b)inary, (g)reyscale, (c)olor, or (r)eal

Copy Window: <source> <destination>

COPY WINDOW - copies the contents of the source window to the destination
window. If the destination is smaller than the source,
the source will be trucated. If the destination is larger,
then any unneeded area will be left untouched.

Source - no restriction
Destination - must be same type as source

Delete Tsave: <window>

DELETE TSAVE - deletes a tsave.
Window - may be greyscale or color

must be on screen

Delete Window: <window>

DELETE WINDOW - deallocates a window.
Window - no restriction

Demo Lambert: <window> <sx> <sy> <sz>

DEMO LAMBERT - generate image of cylinder using lambert's law
Assume orthogonal projection.

Window - must be greyscale
Source X - real-valued x position of source
Source Y - real-valued y position of source
Source Z - real-valued z position of source

DoG Filter: <source> <destination> <width> <i^dc [0.0]>
4 Switches: <i - interactive> <o - off center> <p - positive only>

Switches: <n = negative only> <a - absolute value> <s - siqned>

62

DoG FILTER - Convolves a difference of Gaussians kernel with source.
Approximates a Laplacian of a Gaussian.
By default the kernel is on center, off surround.
Use switch -o to get an off center, on surround kernel.

Source - may be greyscale or color window
If color only the red byte is used

Destination - If greyscale window, results are normalized to [-127,127]
& then translated to [0,254] so that zerocrossings
have value 127
If color window, then zerocrossings have value 0
Only color windows can accomodate negative values

Width - Distance in pixels between poi of inhibitory gaussian
DC term - Adjusts the volume under the excitatory gaussian

Either specified by argument or set interactively using -i
-i - Set the DC term interactively.
-o - Change kernel to off center, on surround.
-p - Show positive values only
-n - Show negative values only
-s - Show signs only
-a - Take absolute value
Note - The four transformations specified by the switches are

performed before the normalization & translation of
greyscale destinations.

Enhance Contrast: <source> <destination>

ENHANCE CONTRAST - maximizes the intensity differences between pixels.
Source - must be greyscale or color

If color only the red byte is used.
Destination - must be same type and size as source

FFT Image: <source> <destination>
Switches: <1 = display log(amplitude)>

FFT IMAGE - transforms from spatial domain to frequency domain
and displays result as intesity image

Source - must be greyscale with dimensions - power of 2
Destination - must have same size and type as source
-1 - display logarithm of amplitude rather than amplitude

FFT Plot: <source> <dest> <start> <end> <a~xlb> <alxub> <a~ylb> <a~yub>
Switches: <a - auto-scale> <f - fit to log(freq)> <p - fit to log(power)>
Switches: <i - integer-valued> <d - display data> <c - clear destination>

FFT PLOT - plot frequency vs power and show best linear fit
Source - must be greyscale
Destination - must be greyscale
Start - first data point to plot
End - last data point to plot
X Lower Bound - lower bound on x data values

required to compare plots across images
do not specify with -a

X Upper Bound - upper bound on x data values
required to compare plots across imacres

63

do not specify with -a
Y Lower Bound - lower bound on y data values

required to compare plots across images
do not specify with -a

Y Upper Bound - upper bound on y data values
required to compare plots across images
do not specify with -a

-a - scale automatically
-f - plot log(frequency) instead of frequency
-i - input values are integer-valued, not grey-scale
-p - plot log(power) instead of power
-d - display data point being plotted

Fourier Fractal Seg: <source> <dest>
Switches: <d = display slopes>

FOURIER FRACTAL SEG - the Pentland method of doing fractal segmentation.
compute fractal dimension for each 8x8 square by
means of a fourier transform

Source - must be greyscale & each dimension must = power of 2
Destination - must be same type and size as source

Fourier OH Curve: <source> <dest> <ospace (5]> <start [2]> <end [0]>
Switches: <a = autoscale radius> <d - display curve pts>

FOURIER OH CURVE - plots curve of orientation vs hausdorff dimension
Source - must be greyscale & have square dimensions = power of 2
Destination - must be color
Orientation Spacing - spacing of samples of orientation dimension in degrees
Start - first data point to plot
End - last data point to plot
Radius Scale - factor to scale radius by

Do not provide this argument with the switch -a.

Frame: <window>

FRAME - draws a box in inverted color around a window.
The box is inclusive, covering the edges of the window.
To make the box go away, simply issue FRAME once more.

Window - may be greyscale or color

Gabor Filter: <source> <dest> <file>
• <kxsize (7]> <kysize [7]> <sdevx [2.0]> <sdevy [2.0]>

<spatialjpaving [2]>
<octaves (-11> <minperiod [2.0]>
<orient paving [30.0]> <ofirst [0]> <olast [5]>

GABOR FILTER - transforms from spatial domain to info hyperspace.
Source - must be greyscale & each dimension must - power of 2
Destination - must be same size and type as source
Temp File - unique file prefix for temporary files written to disk.
Kernel X Size - odd integer defining size in pixels of kernel width
Kernel Y Size - odd inteqer defininq size in pixels of kernel heiqht

64

X Std Dev - real-valued standard deviation in pixels per deviation
defines the x-axis coverage of the gaussian envelope

Y Std Dev - real-valued standard deviation in pixels per deviation
defines the y-axis coverage of the gaussian envelope

Spatial Paving - rate at which to sample image, eg 3 = every third pixel
Number of Octaves - Number of levels in pyramid, -1 means use the maximum

possible levels. Since each level is half the size of
the level below, levels are each one octave apart

Minimum Period - real-valued minimum period sampled in pixels per cycle
Its inverse is the frequency sampled at the lowest level
i.e. the highest frequest sampled.

Orientation Paving - Spacing of orientation samples in degrees
Must divide 180 without remainder.

First Orientation - index of first orientation
Last Orientation - index of last orientation

Gabor Fractal Seg: <source> <dest> <ofirst> <olast>
<kxsize [7]> <kysize (7]> <sdevx [2.0]> <sdevy [2.0]>
<spatialpaving [2]>
<#octaves [-I]> <minperiod [2.0]>
<orientypaving [30.0]> <ofirst [0]> <olast [5]>

GABOR FRACTAL SEG - use gabor filter to compute fractal dimension
Source - must be greyscale
Destination - must be greyscale
Kernel X Size - odd integer defining size in pixels of kernel width
Kernel Y Size - odd integer defining size in pixels of kernel height
X Std Dev - real-valued standard deviation in pixels per deviation

defines the x-axis coverage of the gaussian envelope
Y Std Dev - real-valued standard deviation in pixels per deviation

defines the y-axis coverage of the gaussian envelope
Spatial Paving - rate at which to sample image, eg 3 = every third pixel
Number of Octaves - Number of levels in pyramid, -1 means max possible levels

Since each level is half the size of the level below
levels are each one octave apart

Minimum Period - real-valued minimum period sampled in pixels per cycle
Its inverse is the frequency sampled at the lowest level
ie the highest frequest sampled.

Orientation Paving - Spacing of orientation samples in degrees
Must divide 180 without remainder.

First Orientation - index of first orientation
Last Orientation - index of last orientation

Gabor OH Curve: <source> <dest>

GABOR OH CURVE - plots curve of orientation vs hausdorff dimension
Source - must be greyscale
Destination - must be greyscale

Gaussian Expand: <source> <dest>

GAUSSIAN EXPAND - uses 5x5 gaussian kernel to expand repeatedly by factor
of 2 from size of source to size of destination

Source - must be greyscale and dx,dy must be powers of two
Destination - must be qreyscale and dx,dy must be powers of two

65

Gaussian Filter: <source> <dest> <width> <dc [0.0]>
* Switches: <n = new version>

GAUSSIAN FILTER - 1o pass filters an image using a gaussian.
Source - must be greyscale
Destination - must be the same size and type as source

The results are normalized to [a,b],
where a & b are the min & max intensities of the source.

Width - one theory says this is the distance in pixels between poi
DC term - Adjusts the volume under the gaussian.
-n - use new version where width = standard deviation in pixels

p

Gaussian Reduce: <source> <dest>

GAUSSIAN REDUCE - uses 5x5 gaussian kernel to reduce repeatedly by factor
of 2 from size of source to size of destination.

Source - must be greyscale and dx,dy must be powers of two
Destination - must be greyscale and dx,dy must be powers of two

Get 1D: <window>

GET ID - get fractal dimension for ld image using FFT
Window - must be greyscale, uses only top line

Get Picture: <window> <file>

GET PICTURE - gets a picture from a hips formatted file and fits it into
a window.

Window - no restriction
Color windows requires a triplet of files (see below).

File - name of file matching window type
If window is color, .r, .g, & .b will automatically be
suffixed to the file name.

Grey Operations: <source 1> <op> <source 2> <destination>
Switches: <n - normalize>

GREY OPERATIONS - performs binary operations on greyscale windows of
identical characteristics.

Source 1 - must be greyscale
Operation - One of addition(+), subtract -n(-), or(I), exclusive or(^),

.and(&), multiplication(*), d~vision(/), distance(d).

Source 2 - must be greyscale
dimensions must match those of source 1

Destination - must be greyscale
dimensions must match those of source 1

-n - normalize result of operation instead of clipping
only use with addition, subtraction, multiplication, and
division

66

Grid: <window> <xspace> <yspace> <ir 101> <iAg [0]> <iAb (0]>
Switches: <i = inverted color>

GRID - draws a grid over a window
Window - may be greyscale or color
X Spacing - horizontal spacing between grid lines
Y Spacing - vertical spacing between grid lines
Red - red intensity
Green - green intensity (ignored if window is greyscale)
Blue - blue intensity (ignored if window is greyscale)
-i - draw the grid in inverted color.

Do not provide color arguments with this switch.

Halftone: <source> <destination>

HALFTONE - halftones grey areas of an image, ignoring color pixels
Source - must be greyscale or color
Destination - must be same type and size as source

Help: NO ARGUMENTS

HELP - Displays system help.

Histogram: <source> <tAdestination> <c&clip>
Switches: <c = clip hi freq> <t = terminal only>

HISTOGRAM - draws a histogram of the source in the destination
and prints a numerical histogram on the terminal screen.
The numerical histogram is both unscaled and unclipped.
The graphics histogram always has its intensity range
scaled to fit the destination window width, and its
frequency range is always scaled to fit the destination
window depth.

Source - must be greyscale
Destination - must be color and at least 256 pixels wide
Percent to Clip - integer percentage (See -c below)

Provide only if using -c.
-c - Clip the highest x percent of frequencies, e.g. if a

total of 10 different frequencies arise in the histogram,
clipping the highest 20 percent means that the graphics
output will be scaled to maximize contrast between the 8
lower frequencies. With -c you must specify the percentage
as an additional argument in integer form.

-t - Cancels the graphics display.
Do not specify a destination window with this switch.

Info Window: <window>

INFO WINDOW provides information about a given window in the format
<Name, X, Y, DX, DY, Type, Updated, Tsaved?>

<Name> window's sVmbolic name;

. -..

67

<X, Y> coordinates of window's top left hand corner;
<DX, DY> window's width and depth in pixels;
<Type> window type: Binary, Grey, Color, or Real
<Updated> tells whether the window is updated on screen or in core;
<Tsaved?> tells whether or not a window that is being updated on

screen has a copy of itself stored in core.
If the window has a title, that also is displayed.

Init Display: NO ARGUMENTS

INIT DISPLAY - initializes the graphics display device.

Integer Operations: <source 1> <op> <source 2> <destination>
Switches: <g = make greyscale>

INTEGER OPERATIONS - performs binary operations on greyscale windows of
identical characteristics.

Source 1 - must be color or greyscale
Operation - One of addition(+), subtraction(-), or(I), exclusive or(^ '

and(&), multiplication(*), division(/), distance(d).
Source 2 - must be color or greyscale

dimensions must match those of source 1
Destination - must be color or greyscale

dimensions must match those of source 1
-g - convert result of operation to greyscale

Interpolative Zoom: <source> <destination> <xzoom> <yzoom>

INTERPOLZATIVE ZOOM - expands the source into the destination using bilinear
interpolation. If the destination is too small, the
source is reduced. If the destination is too big,
the extra area is untouched.

Source - may be greyscale or color
Destination - may be greyscale or color
X Zoom - real zoom factor > 1.0
Y Zoom - real zoom factor > 1.0

Life: <window> <birth min> <birth max> <survival min> <survival max> <numgen>

LIFE - play the game of life
Window - must be greyscale, must be on screen, and must contain

the initial pattern
Birth Min - minimum number of neighbors for dead->live transition
Birth Max - maximum number of neighbors for dead->live transition
Survival Min - minimum number of neighbors to prevent live->dead transition
Survival Max - maximum number of neighbors to prevent live->dead transition
Num Generations - number of generations

Line: <window> <xl> <yl> <x2> <y2> <i~r [0]> <i^g [0]> <ib [0]>
Switches: <i - inverted color>

68

The larger the size the better the generated fractal
will match the specified dimension.

Scalel - Size of 1st process lobe unless -t is used, in which case
its the threshold in degrees.

Phasel - Orientation of Ist process lobe.
Powerl - Eccentricity of ist process lobe.

If -t specified, powerl = # degrees sutended by pie slices
Scale2 - Size of 2nd process lobe.
Phase2 - Orientation of 2st process lobe.
Powerl - Eccentricity of 2st process lobe.

Make Window: <name> <x> <y> <xsize [2563> <ysize [256]> <type [g)>
Switches: <c = make in core>

MAKE WINDOW - allocates a window on a 512 x 512 pixel plane.
The top left corner of the pixel plane is (0,0).
There are no constraints on position,
i.e. overlapping other windows is ok.

Window Name - a unique symbolic name
X Position - x coordinate of top left corner in screen coordinates
Y Position - y coordinate of top left corner in screen coordinates
X Size - width in pixels

The default is 256.
Y Size - height in pixels

The default is 256.
-c - Update the window in core.

Must be used if the Menu System was called with the
core switch (-c).

Type - (b)inary, (g)reyscale, (c)olor, or (r)eal
The default is greyscale.

Median Filter: <source> <destination> <xsize> <ysize> <(ai)^"sampling">
Switches: <i = interactive> <a = all pixels sampled>

MEDIAN FILTER - applies a median filter good for reducing spot noise
Source - must be greyscale
Destination - must be same size and type as source
X Size - horizontal width of kernel
Y Size - vertical width of kernel
Sampling Scheme - a quoted string specifying the pixels that the filter will

sample to determine the median of the region it covers.
The string must only contain ones and zeroes, where a one
indicates that an element will be sampled and a zero
indicates that it will not. eg: a 3x3 filter that samples
the first and third columns would be given by "101101101"
and a 5 x 3 filter sampling the first and third rows would
be described by "111110000011111".
-a & -i also let you specify the sampling scheme.

-i - Lets you toggle filter elements on or off using a cursor.
Do not provide a sampling scheme argument with this switch.

-a - Indicates that all pixels will be sampled.
Do not provide a sampling scheme argument with this switch.

Mouse Block Fill: <window> <i^r [0]> <iAg [0]> <iAb [0]>
Switches: <i - inverted color>

69

LINE - draws a line in a window.
Lines extending past window boundaries are clipped.

Window - may be greyscale or color
Xl - x coordinate of first endpoint
Y1 - y coordinate of first endpoint
X2 - x coordinate of second endpoint
Y2 - y coordinate of second endpoint
Red - red intensity
Green - green intensity (ignored if window is greyscale)
Blue - blue intensity (ignored if window is greyscale)
-i - draw line in inverted color

Do not provide color arguments with this switch.

List Windows: NO ARGUMENTS

LIST WINDOWS provides information about each window in the format
<Name, X, Y, DX, DY, Type, Updated, Tsaved?>

<Name> window's symbolic name;
<X, Y> coordinates of window's top left hand corner;
<DX, DY> window's width and depth in pixels;
<Type> window type: Binary, Grey, Color, or Real
<Updated> tells whether the window is updated on screen or in core;
<Tsaved?> tells whether or not a window that is being updated on

screen has a copy of itself stored in core.
The command INFO WINDOW provides more data about a specific window.
A count of windows used and unused is also provided.

Make ID Fractal: <window> <dimension> <sample [8192)> <offset [0]>
Switches: <1 = line texture> <r = reproducible>

MAKE ID FRACTAL - generate 1D fractal texture by filtering
ID real white noise in the frequency domain
The output is a graph of position vs elevation.

Window - must be greyscale
Dimension - 1.0 <= fractal dimension < 2.0
Sample Size - the size of the white noise sample

Must be a power of two because of FFT.
The larger the size the better the generated fractal

Freq Offset - index of lowest displayed frequency
-1 - generate line texture instead of graph
-r - generate reproducible random noise

Make 2D Fractal: <window> <dim> <sample [512]> <sl> <pl> <el> <s2> <p2> <e2>
Switches: <a = one lobed process> <b - two lobed processes>
Switches: <t - threshold process> <o - original output> <z = zeromin output>
Switches: <s = scaledown output> <n - non-reproducible>

MAKE 2D FRACTAL - make 2D fractal texture by filtering 2D real white noise
in the frequency domain. By default the fractal will be
isotropic; use the switches to make anisotropic fractals.
The texture is presented as an intensity map.

Window - must be greyscale
Dimension - 2.0 <- fractal dimension < 3.0
Sample Size - the size of the white noise sample

Must be a power of two because of FFT.

70

MOUSE BLOCK FILL - fill a block within a window with a color
Use the mouse to select two diagonally opposed corners.

Window - must be color or greyscale.
Red - red color value
Green - green color value (ignored if window is greyscale)
Blue - blue color value (ignored if window is greyscale)
-i - draw block in inverted color

Do not provide color arguments with this switch.

Mouse Block Read: <window>

MOUSE BLOCK READ - lets you define a block within a window and examine
the coordinates and intensities of each pixel in the
block. Use the mouse to select two diagonally opposed
corners.

Window - must be color or greyscale.

Mouse Cross-section: <source> <destination>

MOUSE CROSS-SECTION - lets you view plots of greyvalue along cross-sections
of an image.

Source - must be greyscale
Destination - must be color, at least 256 pixels high, and at least

as wide as the largest dimension of the source.

Mouse Dots: <window> <r [0]> <g [0]> <b [0]>

MOUSE DOTS - lets you draw dots in a window using a mouse
Window - may be greyscale or color
Red - red intensity
Green - green intensity (ignored if window is greyscale)
Blue - blue intensity (ignored if window is greyscale)

Mouse Drag New Window: <name> <xsize [256]> <ysize [256]> <type [g]>

MOUSE DRAG NEW WINDOW - allocates a window on a 512 x 512 pixel plane.
Use the mouse to move the window frame around the
screen by one corner. You can change the corner that
the mouse selects. There are no constraints on
position, i.e. overlapping other window is ok.
The window cannot be created in core.

Window Name - a unique syrbolic name
X Size - width in pixels. The default is 256.
Y Size - height in pixels. The default is 256.
Type - (g)reyscale or (c)olor. The default is greyscale.

Mouse Jagged Line: <window> <iAr [0]> <iAg [0]> <i'Ab [0]>
Switches: <i - inverted color>

MOUSE JAGGED LINE - lets you draw a an unlimited number of connected line

71

segments in a window using a mouse.
Window - may be greyscale or color
Red - red intensity
Green - green intensity (ignored if window is greyscale)
Blue - blue intensity (ignored if window is greyscale)
-i - use inverted color

Do not specify colors with this switch.

Mouse Make Window: <name> <type [g]>

MOUSE MAKE WINDOW - allocates a window on a 1024 x 1024 pixel plane.
Use the mouse to select two opposing corners of the
new window.

Window Name - a unique symbolic name
Type - (b)inary, (g)reyscale, (c)olor, or (r)eal

The default is greyscale.
Note - The top left corner of the pixel plane is (0,0).

There are no constraints on position,
i.e. overlapping other windows is ok.

- The window cannot be created in core.
- The window is framed after creation; you may remove

the box using FRAME.

Mouse Pixel Read: <window>

MOUSE PIXEL READ - lets you retrieve the window coordinates and color of the
pixel under the cursor.

Window - must be greyscale or color

Mouse Polygon: <window> <i^r [0]> <iAg [0]> <iAb [0]>
Switches: <i = inverted color>

MOUSE POLYGON - lets you draw a polygon in a window using a mouse.
Window - may be greyscale or color
Red - red intensity
Green - green intensity (ignored if window is greyscale)
Blue - blue intensity (ignored if window is greyscale)
-i - use inverted color

Do not specify color values with this switch.

Mouse Spline: <window> <iAr [0]> <i'g [0]> <i'b [0]>
Switches: <i - inverted color>

MOUSE SPLINE - lets you use a mouse to connect knot points with a spline.
* Window - may be greyscale or color

Red - red intensity
Green - green intensity (ignored if window is greyscale)
Blue - blue intensity (ignored if window is greyscale)
-i - draw curve in inverted color

Do not provide color arguments with this switch. j

72

Mouse Straight Line: <window> <iAr [0]> <iAg [0]> <i^b [0]>
Switches: <i = inverted color>

MOUSE STRAIGHT LINE - lets you draw an unlimited number of straight lines
in a window using a mouse.

Window - may be greyscale or color
Red - red intensity
Green - green intensity (ignored if window is greyscale)
Blue - blue intensity (ignored if window is greyscale)
-i - use inverted color

Do not specify color values with this switch.

Print Picture: <window> <print file>
Switches: <w = write file only>

PRINT PICTURE - dumps a window's contents to a print file, which is then
spooled to a graphics printer. The print file may be
deleted any time after is spooled to the printer.
Make sure a color ribbon is in the printer.

Window - may be color or greyscale
If greyscale, the printer output is monochrome,
otherwise it is color.

Print File - the name of the file to which the picture will be dumped.
-w - dump the picture to the print file but do not spool it.

Put Picture: <window> <file>
Switches: <o = overwrite file> <r = write red byte only>

PUT PICTURE - writes a image to a file on disk.
Window - no restriction
File - name of file

If the picture is color and -r is NOT used
then the file name provided will be
automatically prefixed to .r, .g, and .b.

-o - Overwrite an existing file.
-r - Write red byte only.

Can be used only with color windows.

Quit: NO ARGUMENTF

QUIT - Resets the terminal screen, closes the scriptfile if it
is open and returns you to the operating system.

Random Binary Image: <window>
Switches: <r - reproducible>

RANDOM BINARY IMAGE - create a random binary image
Window - must be greyscale
-r - generate reproducible pattern

Rectanqle: <window> <xl> <yl> <x2> <y2> <ir [0]> <i~q [0]> <iAb [0]>

73

Switches: <i = inverted color>

RECTANGLE - draws a rectangle with a color.
Rectangles extending past window boundaries are clipped.

Window - may be greyscale or color
X 1 - x coordinate of corner 1
Y 1 - y coordinate of corner 1
X 2 - x coordinate of corner opposite to corner 1
Y 2 - y coordinate of corner opposite to corner 1
Red - red intensity
Green - green intensity (ignored if window is greyscale)
Blue - blue intensity (ignored if window is greyscale)
I - draw the circle in inverted color.

Do not provide color arguments with this switch.

Refresh: NO ARGUMENTS

REFRESH - refreshes the terminal display.

Replace Color: <src> <dest> <rl[O]> <gl[O> <bl[OJ> <r2[0> <g2[O]> <b2[0]>

REPLACE COLOR - sets every pixel of color 1 to color 2.
Source - must be greyscale or color
Destination - must be same type and size as source
Current Red - red intensity of color 1

- Specify -1 to match any red value.
Current Green - green intensity of color 1 (ignored if window is greyscale)

- Specify -1 to match any green value.
Current Blue - blue intensity of color 1 (ignored if window is greyscale)

- Specify -1 to match any blue value.
New Red - red intensity of color 2

Specify -1 to leave a pixel's red byte unchanged.
New Green - green intensity of color 2 (ignored if window is greyscale)

Specify -1 to leave a pixel's green byte unchanged.
New Blue - blue intensity of color 2 (ignored if window is greyscale)

Specify -1 to leave a pixel's blue byte unchanged.

Replicative Zoom: <source> <destination> <xzoom> <yzoom>

REPLICATIVE ZOOM - does a replicative integer zoom. The source window is
expanded into the destination window by replicating pixels
in the X and Y directions. If the destination window is too
small, the source is reduced. If the destination is too
big, the extra area is untouched.

Source - may be greyscale or color
Destination - must be same type as source

, X Zoom - integer scale factor > 0
Y Zoom - integer scale factor > 0

Rotate 90: <source> <dest>

ROTATE 90 - rotate image 90 degrees clockwise
Source - must be square

74

Destination - must be same type and size as source

Run Script: <script file>
Switches: <e = echo> <i = interactive> <a = abort on error>

RUN SCRIPT - executes a script file during an interactive session.
Script File - script file to run
-e - Echo script commands to screen.
-i - Allow user interaction (eg activate more filter).
-a - Abort on script file error.

Scale Pixels: <source> <destination> <scale factor>

SCALE PIXELS - scales the value of each pixel by factor
ie (pixel = pixel * factor) and then clips the result
to [0,2551

Source - must be greyscale
Destination - must have same type and dimensions as source
Scale Factor - real-valued amount by which to scale each pixel

Script Off: NO ARGUMENTS

SCRIPT OFF - turns off the recording mechanism and prints
the number of lines written to the script file.

Script On: <file>

SCRIPT ON - turns on a recording mechanism that writes each successfully
executed command line to a file on disk. The command line
will be saved even if you are prompted for arguments. If a
command line contains enough arguments to invoke a routine
several times then the script file will contain a line for
each invocation, eg: entering "tsave: wl w2" will result
in two lines, "tsave: wl" and "tsave: w2" being written
to the script file.
Command lines beginning with the comment character '#' will
be written to the file. However, comments on a line
containing an actual command will be disregarded and
therefore not recorded.

File - file to write to
If file exists, it is overwritten.

Set Environment: <"variable"> <"value">

SET ENVIRONMENT - allows you to change environment variables.
use SHOW ENVIRONMENT to get the variable names and
sample values

Variable - quoted string naming the environment variable
Value - quoted string that will become the variable's new value

75

Show Environment: NO ARGUMENTS

SHOW ENVIRONMENT - displays the value of every environment variable.

Show Title: <window> <xpos> <ypos> <r [0]> <g [0]> <b [01>
Switches: <v = vertical>

SHOW TITLE - writes a window's title to the graphics display.
Currently clipping is not performed.

Window - may be greyscale or color
X Position - x coordinate of top left corner
Y Position - y coordinate of top left corner
Red - red intensity
Green - green intensity (ignored if window is greyscale)
Blue - blue intensity (ignored if window is greyscale)
-v - Write the text vertically.

Snap: <window>

SNAP - This a no-op for the RASTECH.

Statistics: <window>

STATISTICS - find the min, max, mean, standard deviation,
variance, skewness, and kurtosis of a window.

Window - must be greyscale

Subsampling Reduce: <source> <dest>

SUBSAMPLING REDUCE - subsamples source by factor of 2 to produce
destination

Source - must be greyscale and dx,dy must be powers of two
Destination - must be greyscale and dx,dy must be powers of two

Superimpose: <mask> <foreground> <background> <destination>

SUPERIMPOSE - places a foreground over a background according to a mask.
If the value of a mask pixel is 255, a foreground pixel
is written to destination. If the mask pixel is 0, a
background pixel is written.

Mask - may be greyscale or color
Foreground - Must be same size and type as mask
Background - Must be same size and type as mask
Destination - Must be same size and type as mask

Text: <window> <xpos> <ypos> <r [0]> <g [0]> <b [0]> <t^"text">
Switches: <v - vertical> <t - title>

A I

76

TEXT - writes a string to the screen.
Clipping is not performed.

Window - may be greyscale or color
must be on screen

X Position - x coordinate of top left corner of text block
Y Position - y coordinate of top left corner of text block
Red - red intensity
Green - green intensity (ignored if window is greyscale)
Blue - blue intensity (ignored if window is greyscale)
Text String - text to print, must be in quoted.
-v - Write the text vertically.
-t - Use the window's title as the text.

Thin: <source> <destination> <signal> <background> <threshold>

THIN - Given a binary image, delete blobs that are
smaller than a threshold. Blob sizes are determined
assuming 8-way connectivity.

Source - Assumed to be a greyscale image comprised of pixels that
have the the values signal or background. Any pixels
having other values are treated as background pixels
for the purpose of counting blob sizes but are displayed
with their original values in the destination.

Destination - must be same size and type as source
Signal - color of blobs to threshold
Background - background color
Threshold Size - blob size threshold in pixels

Threshold: <window> <lower bound> <upper bound> <c&greyval>
Switches: <b = function b> <c = function c> <s = skip color>

THRESHOLD - applies one of three threshold functions to a greyscale
image. All functions require that the greyscale range
be partitioned into three regions.

Window - must be greyscale
Lower Bound - Partitions the first and second regions.
Upper Bound - Partitions the second and third regions.
Greyval - Greyval to which regions 2 will be set if using function c.

Provide this argument only if using -c.
-b - Use function b.
-c - Use function c.-s - Skips over pixels that are not greyscale.
Note - The functions are described below:
Function Switch Region 1 Region 2 Region 3

0 <- x < LB LB <- x <- UB UB < x <- 255

a none set to 0 set to 255 set to 0
b -b set to 0 unchanged set to 255
c -c unchanged set to greyval unchanged

To Core: <window>
Switches: <o - overwrite a tsave> <t - use tsave as contents>

TO CORE - switches a window from being updated on screen
to beinq updated in core.

77

Window - may be greyscale or color
must be on screen

-o - Overwrite the tsave if it exists.
-t - Use the tsave (if it exists) as the new window contents.

To Screen: <window> <sAxpos> <sAypos>
Switches: <s = use same <x,y>>

TO SCREEN - switches a window from being updated in core
to being updated on screen.

Window - may be greyscale or color
must be in core

Xpos - x position of top left corner in screen coordinates
Ypos - y position of top left corner in screen coordinates
-s - Use the same top left corner that is already stored.

Translate Pixels: <source> <destination> <translation factor>

TRANSLATE PIXELS - computes pixel = pixel + translation factor
and then clips the result to [0,255]

Source - must be greyscale
Destination - must have same type and dimensions as source
Translation - integer amount by which to translate

Trestore: <window>

TRESTORE - replaces a window's screen contents with the window's
last tsave. A tsave is a TEMPORARY save used to save a
window's contents to core in case future changes to the
window need to be undone.

Window - may be greyscale or color
must be on screen

Trim: <window> <xthick> <ythick> <i~r (0]> <i"g [0]> <ib [0]>
Switches: <i - inverted color>

TRIM - Draws a border around a window, but on the inside.
Useful for hiding edge effects.

Window - may be greyscale or color
X Thickness - width in pixels of left and right borders
Y Thickness - width in pixels of top and bottom borders
Red - red intensity
Green - green intensity (ignored if window is greyscale)
Blue - blue intensity (ignored if window is greyscale)
-i - draw border in inverted color

Do not provide color arguments with this switch.

Tsave: <window>
Switches: <o - overwrite old tsave>

TSAVE - saves a window's contents to core (volatile memory).

78

This is a TEMPORARY save used to save a window's
contents in case future changes to the window need to be
undone.
Use TRESTORE to copy a tsave back onto the screen.

Window - may be greyscale or color
must be on screen

-o - overwrite any existing tsave of the window

Verify Fractal: <source> <destination>

VERIFY FRACTAL - use second order statistics to see if image is fractal
Source - must be greyscale
Destination - must be 512x512

Wedge: <window>

WEDGE - Replaces a window's contents with a gradient changing
column by column from 0 to 255. If there are more than 256
columns in the window the gradient repeats starting at 0.

Window - may be greyscale or color

White Noise: <window>

WHITE NOISE - fill an image with white noise in the range [0,255]
Window - must be greyscale

Zerocrossings: <source> <destination>

ZEROCROSSINGS - applies the following transformations to isolate
zerocrossings found by a DoG Filter.
+-,-+ ==> 10
++,-- => 00
0-,0+ -=> 10
-0,+0 -=> 01
00 ==> 11

Source - may be greyscale or color
If color zerocrossings are assumed to have value 0.
If greyscale zerocrossings are assumed to have value 127.

Destination - must be greyscale.

_________ '

